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POINTS OF VIEW

Color blindness
Since my first column on color coding1 appeared, we have received a 
number of e-mails asking us to highlight the issue of color blindness. 
One of those correspondences was published in the October 2010 
issue2. Here I offer guidelines to make graphics accessible to those 
with color vision deficiencies.

Color blindness affects a substantial portion of the human population. 
Protanopia and deuteranopia, the two most common forms of inherited 
color blindness, are red-green color vision defects caused by the absence 
of red or green retinal photoreceptors, respectively. In individuals of 
Northern European ancestry, as many as 8 percent of men and 0.5 per-
cent of women experience the common form of red-green color blind-
ness3. If a submitted manuscript happens to go to three male reviewers 
of Northern European descent, the chance that at least one will be color 

blind is 22 percent.
Picking colors suitable 

for color-blind read-
ers not only enhances 
accessibility but also is 
good graphic design 
practice. For example, 
the Ishihara color vision 
test intentionally relies 
only on color hue to 
create contrast, as evi-
dent when the image is 
converted to grayscale  
(Fig. 1a). In general, 
colors will be easier to 
distinguish when they 
vary in lightness and 
saturation as well as hue  
(Fig. 1b). The palette of 

eight colors shown in Figure 2 has good overall variability and can be 
differentiated by individuals with red-green color blindness.

It is useful to remember that pure red and pure green are not the 
only culprits in color confusion—rather, any color with components 
of red and green can cause trouble. Authors can rely on software to 
simulate how images might appear to individuals with red-green 
color blindness. In Adobe Illustrator and Photoshop, first convert the 
document to RGB color space for accurate simulation and create a 

soft proof (View > Proof Setup > Color Blindness). Simultaneously 
viewing the original and the soft proof (Window > Arrange > New 
Window in Photoshop) makes it convenient to adjust colors in order 
to make them universally accessible. Web-based tools such as Vischeck 
(www.vischeck.com) can also produce simulated images. 

Perhaps the most widespread use of red-green color coding in the 
life sciences is in immunofluorescent images (Fig. 3a). To make this 
and other artificial color schemes accessible to readers with red-green 
color blindness, replace red with magenta (Fig. 3b, top). This can be 
easily accomplished using Photoshop. Because red mixes with blue to 
produce magenta, copy the contents from the red channel (Window >  
Channels) and paste them into the blue channel. This unconventional 
magenta-green color coding may require a key indicating that the 
overlap of these colors produces white. Alternatively, some individu-
als with red-green color blindness find that replacing green with tur-
quoise provides the most visible difference (Fig. 3b, bottom).

For color-blind individuals viewing existing images with colors that 
are difficult to discriminate, there are several tools for computers and 
mobile devices that may be helpful. The DanKam app for iPhone and 
Android takes information coming into the phone’s camera and shifts 
the color spectrum so that colors fall within the range that people who 
are color blind can see. eyePilot (www.colorhelper.com) and Visolve 
Deflector (www.ryobi-sol.co.jp/visolve/en/deflector.html) each use a 
‘lens’ to enable users to manipulate colors of any content on the screen. 
People with typical color vision may also find these computer tools 
useful. For example, eyePilot permits one to isolate specific colors 
against a gray background, facilitating in-depth analysis of presenta-
tions with complex color-coding schemes.
Bang Wong
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Figure 3 | Red-green color coding in an immunofluorescent image.  
(a) Conventional color coding is difficult for individuals with red-green color 
blindness (protanopia or deuteranopia) to discriminate. (b) Replacing red 
with magenta (top) or green with turquoise (bottom) improves visibility for 
such individuals. Source image from reference 4.

Figure 1 | Ishihara color-vision test plate. 
(a) Viewers with normal color vision should 
see the numeral ‘6’. (b) Changing lightness 
of background improves contrast.

Figure 2 | Colors optimized for color-blind individuals. P and D indicate 
simulated colors as seen by individuals with protanopia and deuteranopia, 
respectively.
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POINTS OF VIEW

Avoiding color
Last month I wrote about color blindness and ways to make infor-
mation accessible to individuals with color vision deficiencies. I 
would like to continue by considering graphical alternatives to 
color that could improve the overall clarity and utility of data 
displays. 

The primary use of color in research is to convey information. 
When used effectively, color can simplify a complex analysis task. 
When misused, it can bias a reader’s perception of the underly-
ing data. For example, when color gradients indicating relative 
quantity contain abrupt transitions, specific numerical ranges 
can be preferentially accentuated (Fig. 1a). Edward Tufte advises 
us that color used poorly is worse than no color at all; his motto 
is: “Above all, do no harm”1. Color can cause the wrong informa-
tion to stand out and make meaningful information difficult to 
see. Furthermore, the overuse of color can produce visual clutter 
akin to signage in Times Square or Piccadilly Circus with count-
less elements competing for our attention.

In addition to limiting accessibility, there are several other 
disadvantages to using color to 
present data. I showed how the 
visual phenomenon resulting 
from the interaction of color 
can cause the same color in 
heatmaps to appear different2. 
Color is a relative medium. 
When we pair hues varying 
greatly in saturation or value 
(lightness), we can uninten-
tionally produce presentations 
that are lopsided. In Figure 
1b, the light blue bands appear 
under-represented partially 
because they are lighter than 
the other colors as evident by 
looking at the key in grayscale 
(Fig. 1b). Color can also elicit 
size biases; some people find 
equal areas filled with vibrant 

colors seem to be more dissimilar than when less saturated colors 
are used.  

Although color is an attractive choice for conveying informa-
tion, it may not be the best visual cue to bring out relevant trends. 
Color hue can be such a potent differentiator that using size, 
shape, texture, length, width, orientation, curvature and intensity 
to encode information may enable more aspects of the data to be 
discriminable. Our choice of graphical cues should depend on 
what we and others need to see to reliably pick out patterns. 

In one project at the Broad Institute, researchers wanted to 
understand the evolution of molecular networks by studying gene 
expression in yeast. They had time course data for about a dozen 
species. The researchers were interested in comparing expression 
profiles across genes and species. With their data displayed as 
heatmaps, it is difficult to characterize the differences between 

profiles (Fig. 2a). Redrawing the data as line graphs and shading 
the area under the curve better support the visual task of com-
paring patterns for mirror symmetry and peak shift (Fig. 2b). To 
gauge conservation across metabolic pathways, the researchers 
calculate a correlation score accounting for all species for each 
node in the network and assign color to score (Fig. 2c). As it is 
difficult to sequence color hues, mapping the data to length and 
position makes it easier to see points of high and low correlation 
(Fig. 2d). The compact format allowed data for both metabolites 
and genes to be displayed (Fig. 2d). The visual complexity that 
comes from too many colors makes it difficult to also show the 
metabolite data in the original scheme (Fig. 2c).

Color is often our first choice when it comes to showing data. 
Depending on the fundamental visual task required for analysis, 
basic diagrammatic marks may do a better job of revealing data 
structures. I have seen squiggly lines used effectively to denote 
several data dimensions at once. Although color is inextricably 
tied to what many of us consider to have high visual impact, 
expressiveness relies primarily on one’s graphical selection, 
whereas effectiveness also depends on the capabilities of the 
perceiver. 
Bang Wong
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Figure 1 | Color can mask data.  
(a) Color scale with sharp transition 
in hue and value (arrow) can 
exaggerate specific data ranges. (b) 
Juxtaposing colors highly varying 
in saturation and value can make 
aspects of the data appear under-
represented (light blue). 
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Figure 2 | Color can limit accessibility and hinder analysis. (a) Heatmap 
representation of time series data for species A and B. (b) Filled line 
charts of data from a facilitate profile comparison. (c) Color hue indicates 
correlation score for metabolites in glycolysis (boxes). Enzymes are shown as 
arrows. (d) Replacing color encoding from c with bar length for metabolites 
and position of circles on the x axis for enzymes increases data density 
and makes rank ordering easy. Color indicates directionality of enzymatic 
activity. Visualization technique is from reference 3. 
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POINTS OF VIEW

Simplify to clarify
In the past two columns I have focused on making information 
accessible. I discussed ways to avoid color and shift color hues to 
make them discernible by individuals with color vision deficien-
cies. In this column I focus on ways to make information appar-
ent by simplifying its presentation.

Simplification can lead to greater clarity. In the marketplace, 
simplicity is the capital used to develop clear brand identity. 
Apple prides itself on making things simple and on offering prod-
ucts that are easy to use. In science, value is placed on communi-
cations that are accurate and concise. Edward Tufte wrote about 
the data:ink ratio as a call to reduce the proportion of a graphic 
that is used for decorative purposes or that can be erased without 
loss of data information1.

The best way to simplify is to reduce the number of elements 
on the page. Every picture and bit of text stimulates the visual 
senses and contributes to the intricacy of the presentation. The 
aim is to use the fewest possible ‘marks’ to convey the message 
without sacrificing sophistication. Our general tendency is to fill 
white space with more information. Thus, the judicious removal 
of material is typically not a natural part of the authoring work-
flow. But the opportunity lost from including less is gained in 
greater emphasis on what is shown.

I find it helpful to focus on the primary goal of a figure or 
slide as a guide to pare it down to its constituent parts. I assess 
every component against this measure to create a hierarchy of 
information, eliminating extraneous elements and refining the 
remainder to support the message. In Figure 1, an inversion 
event that results in two fusion genes is shown. The process as 
initially illustrated is unnecessarily complicated (Fig. 1a). The 
diagram can be simplified by combining the first two steps of the 
process and using fewer arrows to indicate movement (Fig. 1b). 
These modifications effectively improve the communication by 
simplifying the design.

Simple should not be mistaken for simplistic. By simplifying, 
we take advantage of the way people see and process information. 
The Gestalt psychologists favored the theoretical approach that 

explains phenomena of perceptual organization in terms of max-
imizing simplicity. Simplified presentations with well-ordered 
layouts and clean lines are more engaging to read and are likely 
better understood.

Eliminating redundant elements is another way to trim extra 
material from a presentation. It is common to see repetition in 
figure labels indicating a series, for example, ‘reaction 1’ and 
‘reaction 2’ (Fig. 2). In these cases, extracting the word in com-
mon between the labels to use as a header will generally tidy the 
appearance. Moreover, authors will occasionally show a variety 
of experimental constructs to capture the underlying diversity 
(Fig. 2). In these situations, try to use the minimum number of 
examples required to demonstrate the concept. Including more 
examples than necessary may actually confuse readers. 

Simplicity can also be achieved by systematically organiz-
ing the elements that remain. By grouping we can make a sys-
tem of many independent parts appear to have fewer elements. 
Deciding what goes with what is the first step to create structure. 
Labels that describe an action or transformation from one step 
to the next should be placed with the progression arrows; object 
descriptions should be placed next to the images (Fig. 2). Also, 
layouts that are neat and orderly appear simpler. In addition to 
grouping, align elements to a few imaginary horizontal and verti-
cal lines appropriate to the presentation, paying attention to the 
negative space to create clear boundaries between groups.
Bang Wong
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Figure 1 | Simplifying illustrations. (a) Initial diagram shows chromosomal 
inversion in three steps with the distal chromosomal ends exchanging places 
as indicated by arrows. (b) A simplified version of the diagram in a with 
fewer steps and a single arrow depicting the rotation of the center part of 
the chromosome.

Figure 2 | Reducing redundant elements. Words repeated in several labels 
(magenta boxes) can be pulled out as headers. Using the smallest number of 
examples to convey a concept will make ideas easier to understand (magenta 
circles). Grouping labels that describe transformations between steps with 
arrows and starting or ending products with images (magenta arrows) will 
add meaningful structure to layouts. Reprinted from Nature Methods2.
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POINTS OF VIEW

Arrows
Arrows are one of the most commonly used graphical devices in scien-
tific figures. In the July 2011 issue of Nature Methods alone I counted 
nearly 300 instances of arrows; more than half of the figures contain 
them. Given the widespread use of arrows, it is worthwhile to take a 
closer look at this privileged class of diagrammatic form and how we 
might benefit from its use. 

Arrows can be highly efficient instruments of visual communication 
because they guide us through complex information. Typically arrows 
are used to point out relevant features, order sequences of events, con-
nect elements and indicate motion. In molecular biology, there are 
several conventions involving the arrow that are generally recognized 
(Fig. 1a). For example, an arrow with a right-angle line segment is 
understood as a transcription start site or promoter, and a short arrow 
placed parallel to a line usually indicates a PCR primer. Several other 
common conventions are shown in Figure 1a. But authors also use 
arrows to illustrate other concepts, some of which are easily under-
stood, whereas others may be less intuitive. 

In his thorough survey of diagrams Robert E. Horn documented 
hundreds of meanings for arrows, including metaphorical uses such 
as increases and decreases1. An arrow’s geometric shape can tell us 
something about its purpose (Fig. 1b), but its meaning is refined and 
interpreted in context. Arrows are a special class of symbols that can 
have multiple meanings even when used in the same figure. A recently 
published figure has many arrows that are used to label parts, convey 
mechanical motion and show reagent flow (Fig. 1c).

When arrows are added to diagrams, they are most readily inter-
preted as conveying change, movement or causality (Fig. 2a). In one 
study, researchers asked college students to evaluate mechanical 
diagrams with and without arrows. Participants who saw diagrams 

with arrows included twice as much functional information in their 
descriptions as those who saw diagrams without arrows2. Arrows are 
therefore most effectively used to focus attention on the functional 
relationships between elements rather than the elements themselves. 

A goal in producing effective figures might be to use arrows spar-
ingly and clearly. One way to do this is to reserve the use of lines with 
heads shaped like arrows for indicating direction or sequence and use 
other well-known graphical marks for other purposes. To emphasize 
the structure of a system—that is, spatial, as opposed to functional, 
inter-relatedness of the parts—we should use lines instead of arrows 
to connect the elements (Fig. 2a). For example, leaders are lines used 
to point at, or lead to, labeled or important parts of an illustration. 
Leaders used for labels should have either no head or only a bullet: 
either a small ball or open circle (Fig. 2b). One exception is the well-
understood arrowhead commonly used in micrographs or other 
imaging to indicate salient features. 

The arrow’s distinctiveness comes from its asymmetric form. As 
such, arrows should be well-proportioned so that their directional-
ity is easy to recognize but not be so big as to distract us from read-
ing the content they intend to illuminate. I prefer Adobe Illustrator 
for drawing arrows because the software offers fine control of size 
and shape. For print publication, an arrow with a stem weight of 
0.75 points and arrowhead scaled to 60% produces a balanced arrow  
(Fig. 2c). Also, I avoid open arrowheads (that is, the letter V on a 
stick) and those with sweeping wings because the trapped whitespace 
produces the optical illusion of  ‘sparkle’, adding visual noise (Fig. 2d). 
Finally, arrows should be strung together as a continuous wireframe 
upon which to hang content. This can be achieved by avoiding sharp 
opposing arrow orientation and allowing for whitespace at the ends 
of the arrows (Fig. 2e,f).

 Used most effectively, arrows are the ‘verbs’ of visual communica-
tion, describing processes and functional relationships. Next month, 
I will focus on layout.
Bang Wong

1.  Horn, R.E. Visual language: global communication for the 21st century (MacroVU, 
Inc., Bainbridge Island, Washington, USA, 1998).

2. Hesier, J. & Tversky, B. Cogn. Sci. 30, 581–592 (2006).
3. Sims, P. et al. Nat. Methods 7, 575–580 (2011).
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Figure 1 | Arrows in scientific diagrams. (a) Well-understood conventions 
in molecular biology indicated by arrows. (b) Arrows are defined loosely by 
their geometric shapes and more definitely in context. (c) A diagram with 
19 arrows used as leaders, to indicate reagent flow and to show mechanical 
movement. Reprinted from Nature Methods3.

Figure 2 | Functional qualities of arrows. (a) The use of arrows versus lines 
as connectors suggests a certain functional relationship. (b) Alternatives to 
arrows as leader lines. (c) Reasonably sized arrows clearly indicate direction 
without being a distraction. (d) Trapped whitespace in ‘open’ arrowheads 
creates optical illusions that can attract unwanted attention. (e) Whitespace 
at the ends of the arrows makes them easy to discriminate from other 
content. (f) Orienting arrows in similar directions creates natural visual flow. 
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POINTS OF VIEW

Layout
Layout is the act of arranging text and images on the page according to 
an overall aesthetic scheme and for the purpose of clarifying a presen-
tation. In graphic arts, it is the elephant in the room; layout underlies 
everything we do when we communicate visually. Well-structured 
content can guide readers through complex information, but when 
the material we present lacks order, it can confuse or, worse yet, agitate 
readers trying to make sense of the material.

Many artists and architects achieve balanced outcomes by propor-
tioning their work to approximate the golden section. The golden sec-
tion is a special mathematical relationship that comes from dividing 
a line into two segments where the ratio of the total length (x + y) to 
the length of the longer segment (x) is the same as that of the length of 
the longer segment (x) to the length of the shorter segment (y) (Fig. 
1a), or 13:8. Many celebrated paintings since at least the Renaissance 
exhibit these proportions (Fig. 1b).

Compositional aesthetics may serve a fundamentally different pur-
pose from designs aimed to communicate. However, the Fibonacci 
numbers, which are also linked to the golden ratio, heavily influence 
graphic design. This sequence of numbers starts with 0 and 1 and each 
subsequent integer is the sum of the previous two (that is, 0, 1, 1, 2, 3, 
5, 8, 13 and so on). The quotient of successive pairs of numbers, with 
the exception of the first few, is approximately 1.6180 (or 13:8). The 
harmonious relationships of the Fibonacci integers are often used as 
measurements for font sizes and determining page layouts in books. 

A practical application of the golden section is to incorporate their 
congruous proportions into slides and posters we create, and not 
just for artistic reasons: the placement of objects on a page can carry 
meaning. A simplified version of the golden section is the ‘rule of 
thirds’, which suggests dividing a page into nine equal parts (Fig. 1c). 
Elements placed along the lines and especially where the lines inter-
sect (the so-called power points) become more visually prominent. 
Eye-tracking studies have shown that our gaze lingers in the regions 
marked by the lines when we scan an image.

Using a grid to aid layout (Fig. 2a) can dramatically streamline 
the design process by taking the guesswork out of sizing and placing 
content. Try creating a set of strategically placed guides in Microsoft 

PowerPoint or Adobe Illustrator before you  work. Grids help to 
anchor content and create stability within a design. They also build 
consistency between slides that allows the audience to anticipate 
where content will appear.

Layout is more than adhering to lines of a grid system: it is the pro-
cess of planning out exactly the journey we want the eyes to travel 
across the arrangements (Fig. 2b). The goal is to reveal the hierarchi-
cal relationship in the information and make clear what is to be read 
first, second and so on. This can be done by developing dominance 
with some elements and practicing restraint with others. Two ways 
to draw a reader’s attention to a compositional element is to make 
it visually different from its surroundings1 or to frame the object in 
ample white space2 (Fig. 2c). The Gestalt principles3,4 also offer useful 
operational guidance to describe relationships between objects based 
on certain graphical cues.

We all have seen slides and posters packed full of content where 
the presenters have assigned equal visual weight to all the material. 
In these situations, it is difficult to know where to begin reading. The 
legendary American graphic designer Paul Rand said, “Without con-
trast, you’re dead.” Layout is the foundation of graphic design, and it 
should not be overlooked. How we arrange elements on the page can 
help or hinder whether the information is understood.

Next month, I will focus on the importance of aligning ‘salience’ 
and ‘relevance’.
Bang Wong
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Figure 1 | Infallible proportions. (a) The golden section is a line segment 
divided by the golden ratio 13:8 such that (x + y) is to x as x is to y.  
(b) In Bathers at Asnières, Georges-Pierre Seurat used the golden section to 
position the horizon and subjects in the composition (http://en.wikipedia.
org/wiki/File:Seurat_bathers.png). (c) The ‘rule of thirds’ is a simplified 
version of the golden section used to form interesting compositions.

Figure 2 | Gridlines help to structure layouts. (a) Examples of gridline 
systems for presentation slides. (b) Arrange elements according to the order 
in which they should be read. (c) Surrounding an element in ample white 
space helps it get noticed first.
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In contrast, unintentional and inadvertent assignment of salience 
can be harmful to the communicative potential of images. In the sam-
ple heatmap shown in Figure 2, the authors chose a color scale that 
makes common sense, using deep red to represent high values. But 
in this case lower values are actually more salient than higher ones 
because deep red is hard to see against the deep blue background of 
the lowest values.

What stands out is often taken as most important or relevant. In 
one study, researchers assessed the effects of salience on the ability of 
test subjects to accurately answer questions that required interpreting 
weather maps. By alternating the relative visibility of task-relevant and 
task-irrelevant information (in this case, information about pressure 
and temperature, respectively) they found that display factors such as 
salience had large effects on task performance3. For example, a ques-
tion about wind direction was supposed to elicit an answer about air 
pressure, but when data on temperature were made most apparent, 
subjects incorrectly responded with a reference to temperature, hav-
ing been influenced by the salience of the temperature data presented. 

In presentations, a potential source of misalignment between 
salience and relevance is in the use of moving images. Presenters 
may include short movies (for example, a rotating three- 
dimensional structure). When these movies are allowed to loop con-
tinuously, this powerful competing stimulus makes it nearly impos-
sible to concentrate on other content, as motion is one of the most 
potent mechanisms for attracting attention. For this reason, animation 
in PowerPoint slides should be used judiciously. The element being 
animated should direct our attention to the most relevant content that 
supports the primary message of the slide. An oscillating arrow will 
draw more of our attention than the objects it is intended to highlight.

It is well recognized that how the same information is presented 
can dramatically affect comprehension. Making relevant information 
visually obvious will ensure that viewers notice the right content. To 
get a sense of what is most salient on the screen, stand back and squint.

Next month, I will conclude this segment of ‘design principles’ by 
discussing the value of ‘design’ itself.
Bang Wong

1. Fecteau, J. & Munoz, D. Trends Cogn. Sci. 10, 382–390 (2006).
2. Wong, B. Nat. Methods 7, 773 (2010).
3.  Hegarty, M. et al. J. Exp. Psychol. Learn. Mem. Cogn. 36, 37–53 (2010).

Bang Wong is the creative director of the Broad Institute of the Massachusetts 
Institute of Technology & Harvard and an adjunct assistant professor in the 
Department of Art as Applied to Medicine at The Johns Hopkins University School 
of Medicine.

POINTS OF VIEW

Salience to relevance
In science communication, it is critical that visual information 
be interpreted efficiently and correctly. The discordance between 
components of an image that are most noticeable and those that are 
most relevant or important can compromise the effectiveness of a 
presentation. This discrepancy can cause viewers to mistakenly pay 
attention to regions of the image that are not relevant. Ultimately, the 
misdirected attention can negatively impact comprehension.

Salience is the physical property that sets an object apart from 
its surroundings. It is particularly important to ensure that salience 
aligns with relevance in visuals used for slide presentations. In these 
situations, information transmission needs to be efficient because 
the audience member is expected to simultaneously listen and read. 
By highlighting relevant information on a slide, we can direct a 
viewer’s attention to the right information. For example, coloring 
a row or column of a table will preferentially direct attention to the 
selected material (Fig. 1a). As information presented as tables typi-
cally appears homogenous, it is especially helpful to define what is 
most important. The same approach can be applied to plots and 
graphs to delineate segments of data (Fig. 1b). Whereas these tech-
niques are not appropriate for all journal publications, annotating 
information presented in slides can be an effective mechanism to 
enable the audience to better grasp what is being said and shown.

Human vision is highly selective. When multiple stimuli are in a 
scene they compete for our visual attention. We make sense of the 
visual field by selecting, in turn, one or few objects for detailed anal-
ysis at the expense of all others. Cognitive scientists create ‘salience 
maps’ to describe the relative visibility of objects in an image that 
explain what we might look at first, second and so on1.

Using the concept of a salience map, we can rely on relative vis-
ibility to order content on the page and help us design better graph-
ics. There are several graphical variables—including color, shape, 
size and position—we can use to create salience (see October 2010 
column)2. Salience is a relative property that depends on the rela-
tionship of one object to other objects on the page. Information that 
is presented physically larger is usually easier to see and is likely to 
be read first. In a composition where most of the parts are oriented 
vertically and horizontally, elements placed at a diagonal stand out. 
On a backdrop of predominantly black-and-white elements, colored 
information is highly conspicuous (Fig. 1).

Figure 1 | Matching salience to relevance draws visual attention to 
important information. (a) Table with a row highlighted. (b) Segments of 
data in a plot emphasized with color.

Figure 2 | Discordances between salience and relevance can be harmful.  
(a) The relative visibility of hues in the color scale is asymmetric, making 
higher values (represented by deep red) less apparent. (b) Continuously 
moving images can be distracting and can compromise the viewer’s ability to 
concentrate on other content.

Color name RGB (1–255)

Black
Orange
Sky blue
Bluish green
Blue
Vermillion

0, 0, 0
230, 159, 0
86, 180, 233
0, 158, 115
0, 114, 178
213, 94, 0
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for depicting the information. Having a clear delineation in how 
different types of information are represented will enable readers to 
quickly learn the visual vocabulary and interpret the presentation. 

For a recent scientific meeting, my colleagues and I created a 
poster that explains the current efforts of the ‘connectivity map’ 
(CMap) (Fig. 2). The CMap1 is a catalog of gene expression data 
collected from human cells treated with chemical and genetic 
reagents. We wanted to provide an overview of the entire experi-
mental process. When developing new designs, it is helpful to look 
for existing solutions. I was inspired by Charles Minard’s flow map 
of Napoleon’s March (Fig. 2 inset) in which he uses line thickness 
to denote quantity. For the Map of CMap2, we accentuated the tre-
mendous effort required to prepare cells for detection and the data 
deluge that ensues by creating a metaphorical mountain that divides 
‘sample preparation’ from ‘data analysis’. This juncture is placed 8:13 
from the right edge of the page according to the golden section (see 
October 2011 column)3. We used color to differentiate steps in the 
CMap process and to identify the physical location in the Broad 
Institute where the work is carried out. Finally we used high-contrast 
headings (that is, white text on black background) to direct readers’ 
attention to the four major features of the poster. 

Well-founded design ideas and technical execution are essential to 
creating professional work. Take the time to master the graphic soft-

ware you depend on most. It is imperative 
that the creative process is not restricted by 
the medium. Design is an exploratory pro-
cess that requires realizing what is in one 
mind’s eye and the ability to fluidly refine 
the graphical characteristics as needed. 

In my columns to date I have highlighted 
a number of design principles I believe are 
pertinent to visual communication in sci-
ence. Starting next month I will work with 
my colleagues as coauthors to focus on sev-
eral topics in data visualization. 
Bang Wong

1. Lamb, J. Science 313, 1929–1935 (2006).
2.  Wong, B. et al. National Institutes of Health 

LINCS Meeting (October 27–28 2011).
3. Wong, B. Nat. Methods 8, 783 (2011).

Bang Wong is the creative director of the Broad Institute 
of the Massachusetts Institute of Technology &  
Harvard and an adjunct assistant professor in the 
Department of Art as Applied to Medicine at  
The Johns Hopkins University School of Medicine.

POINTS OF VIEW

The design process
The primary tenets of design are utility and function. Just as objects 
are intuitive to use when they are well-designed, thoughtfully con-
ceived scientific figures, slides and posters can be easy to interpret 
and understand. Whereas industrial design focuses on things peo-
ple use, graphic design is concerned with designs people read. The 
design process helps us develop a visual literacy to construct presen-
tations that are appealing and convincing. 

Design is a requirement, not a cosmetic addition. Objects that 
are well-designed provide visible clues to their underlying func-
tion. For example, a vegetable peeler has a handle and a blade that 
telegraphs how it should it be used (Fig.  1a). The example shown 
is a classic that has simple form and is highly proficient at peeling. 
In contrast, despite some obvious features, my office telephone is 
not so easy to access (Fig. 1b). Making a simple conference call is a 
bewildering and cryptic process. There is a button marked “confer-
ence” but otherwise no hint as to how to enact the function. Poorly 
mapped visual cues can thwart the normal process of interpretation 
and understanding.   

Good design balances self expression with the need to satisfy an 
audience in a logical manner and finds the best possible solutions to 
problems with known objectives and constraints. The effectiveness of 
a design is determined by the perceiver’s ability to decode the visual 
scheme. 

It might be helpful to think of scientific presentations as products 
that should perform a function. For example, a subway map is a high-
ly efficient tool for figuring out how to get from one part of a city to 
another. If the train information were presented in a table of stops 
and connections, the job of finding the shortest route between two 
points would still be possible but much more difficult. When design-
ing scientific figures, it helps to develop a well-organized approach 

Figure 1 | Visual clues should communicate a product’s functions and 
features. (a) A vegetable peeler with easily interpretable function. (b) An 
office phone with poor visual cues to indicate its operation.

a b

Figure 2 | A scientific poster 
depicting the ‘connectivity map’ 
inspired by a flow chart by Charles 
Minard (inset; source, Wikipedia). 
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Data exploration
Enhancement of pattern discovery through graphical 
representation of data.

Data visualization can serve two distinct purposes: to communicate 
research findings and to guide the data-exploration process as the 
scientific story is unfolding. Each goal entails a different approach to 
data representation, but sound graphic design principles are impor-
tant in both. This column is the first in a series that will focus on 
data-visualization techniques intended to support data exploration.

Exploring data to understand the underlying structure is funda-
mentally different from presenting known characteristics of the data. 
In a presentation, a researcher has already identified an interesting 
structure in the data and is trying to highlight it. In exploration, the 
researcher suspects that regularities are present but does not know 
exactly what they are. Instead of emphasizing any one aspect, graphi-
cal representation is used to provide overviews in which meaningful 
patterns may be found.

Patterns are the essence of data exploration, and the eye’s ability to 
discern form makes visual display integral to the process. The visual 
display of quantitative information can help us see connections in 
the data. Unlike tables of numbers in which there is little visual con-
nection between the elements, graphs allow us to easily detect data 
objects with similar physical properties and assemble them into a 
formation. Data exploration is an iterative process in which expecta-
tions and hypotheses guide a graphical organization of the data, and 
patterns observed in the data germinate new or refined hypotheses.

It is essential to look at data in a graphical form and not rely solely 
on computational metrics. Anscombe’s quartet1 is a compelling 
example of this (Fig. 1). The four sets of numbers in the quartet have 
many identical summary statistics (for example, mean of x values, 
mean of y values, variances, correlations and regression lines) but 
vary wildly when graphed. In this example there are only two vari-
ables in four groups. In realistic scenarios, however, where datasets 
are typically much larger, the question of how to display the data 

visually is substantially more complex.
With a high-dimensional dataset, a common exploratory goal is to 

find ‘classes of behavior’ among multiple components (for example, 
genes, populations, samples and so on). A useful strategy is to create 
simple representations of low-dimensional ‘slices’ of the data. Ideally 
we want to restrict the complexity to one plot for each component. 
To make the visual task of finding commonality between the plots 
simpler, ensure consistency between the elements being inspected. 
For example, using a common scale allows the plots to be directly 
compared.

In the example depicted in Figure 2, 24 types of cells had been 
cultured together in an attempt to study the cells’ growth character-
istics in a mixture. Representing the relative abundance of all the cell 
types as a stack graph (Fig. 2a) makes it clear that different popula-
tions fare differently in this community over time. However, because 
of the interdependencies between all curves in a stack graph, it is 
difficult to see additional trends in this overview. By plotting the 
abundance of each population as a function of time (Fig. 2b) several 
common behaviors can be observed. As the research objective trans-
lates to categorizing shapes of curves, we support this visual task by 
filling the area under the curves, which accentuates their form.

Displaying too much data simultaneously often presents a visual 
burden that should be avoided. To address this, some data must be 
left out. In Figure 2, for example, we limited our observations to one 
of four replicates. In instances where the number of components is 
high (for example, if we had 1,000 instead of 24 cell populations), 
sampling a subset is a sensible option. As we begin to understand 
the structure that underlies the data, we can point to features of the 
data that are of less interest and can therefore be removed from our 
plots. Focusing on a small number of remaining features allows us 
to bring additional components into the graphs and gradually attain 
a more global view of the data.

Over the next several months, we will investigate visualization 
techniques for extracting meaning from data.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.
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1. Anscombe, F. J. Am. Statistician 27, 17–21 (1973).
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Figure 1 | Anscombe’s quartet. (a) The four sets of numbers that form 
Anscombe’s quartet. (b) The highly distinctive graphs that result from 
plotting the data in a.
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Figure 2 | Small multiples. (a) A stack graph showing the relative proportions of 
24 cell lines over time. (b) Individual growth curves for the data graphed in a.
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systems (for example, imagining connections as forces or springs) 
will often produce visible aggregates of nodes, making it easier to 
spot hubs and clusters (Fig. 1c). Node-link diagrams can be highly 
useful but unfortunately do not scale well. As a dataset becomes 
larger, the visual complexity that results from the added informa-
tion density approaches an incomprehensible ‘hairball’.

For larger undirected networks, ‘adjacency matrices’ are a practi-
cal solution (Fig. 2). In this compressed representation, every node 
in the network is shown as a row and a column with the order of 
nodes being the same on both axes. A link between two nodes is 
indicated by filling the two corresponding cells at the intersections 
of the nodes (Fig. 2a). In this way, adjacency matrices do not suffer 
from the data occlusions and edge crossings synonymous with node-
link diagrams. One drawback, however, is that adjacency matrices 
make it difficult to understand the relationships between two nodes 
that are not directly connected.

To maximize the utility of adjacency matrix visualizations, reorder 
the nodes such that as many filled cells appear next to each other 
as possible. The result is that clusters are evident as marks near the 
diagonal and connections ‘between’ clusters appear as clumps away 
from the diagonal. Similarly, hubs are seen as rows and columns with 
many filled cells (Fig. 2b).

There may be times when both node-link diagrams and adja-
cency matrices are inadequate for the size of the network. In these 
in stances, it may be useful to limit the representation to a partial 
network or rely on relevant statistical measures. For example, a clus-
tering coefficient can be computed that describes the extent of inter-
connectivity in the neighborhood of a node.

Next month, we will examine another essential plotting  
technique: heatmaps.
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POINTS OF VIEW

Networks
We describe graphing techniques to support exploration 
of networks.

Most biological phenomena arise from the complex interactions 
between the cell’s many constituents such as proteins, DNA, RNA 
and small molecules. The graphical representations of networks can 
be useful in exploring this complex web of interactions. Choosing 
a suitable network visualization based on the patterns one hopes to 
highlight can yield meaningful insights into data.

Various techniques developed for visualizing networks will bring 
out different salient qualities of relational data. Two relevant features 
of networks are hubs and clusters. Hubs are single nodes connected 
to many other nodes, and clusters are sets of highly interconnected 
nodes. These data features characterize different classes of networks. 
The goal is to choose a graphing technique that is appropriate to 
the scale of the data and a resolution at which we care to study the 
networks.

Networks are known as graphs in mathematics and describe a set 
of pairwise relationships. A common plotting technique for such 
data is as ‘node-link’ diagrams (Fig. 1). In biology, these diagrams 
typically represent molecules as nodes and the connections between 
the nodes as straight or curved lines (also known as edges). A net-
work is said to be directed if the edges are asymmetric (Fig. 1a) and 
undirected if the edges are symmetric (Fig. 1b,c). Cytoscape1 and 
Gephi (http://gephi.org/) are two popular and freely available soft-
ware tools for generating network diagrams.

Node-link diagrams have the distinct advantage of preserving 
the local detail of the network, making it easy to identify nearest 
neighbors for a particular node and to trace paths through the net-
work. With these diagrams, different layouts of the same data can 
dramatically affect how we perceive the relationships of the data 
objects. For example, a circular layout with nodes sequenced by 
their number of connections can reveal the general connectedness 
of a network (Fig. 1b). However, layouts that simulate physical 

Figure 1 | Node-link diagrams. (a) A directed graph typical of a biological 
pathway. (b) An undirected graph with nodes arranged in a circle. (c) A 
spring-embedded layout of data from b.

a b c

Figure 2 | Adjacency matrices. (a) Nodes are ordered as rows and columns; 
connections are indicated as filled cells. (b) A matrix representation of data 
from Figure 1b.
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patterns can become obvious (Fig. 1b). Hierarchical clustering is 
one technique for reordering matrices that creates several display 
challenges. First, because there are 2n–1 possible arrangements for 
n rows or columns related by a cluster tree, a static heat map is only 
one of many possible outcomes. Second, clustering creates useful 
relationship information captured in the cluster tree typically dis-
played on the sides of the matrix. The linear ordering may require 
that some distantly related rows or columns be placed next to one 
another, thus obscuring the relationships reflected in the cluster tree. 
GENE-E is software from the Broad Institute (http://www.broadin-
stitute.org/cancer/software/GENE-E/) with the ability to impart the 
useful information from the periphery to the matrix (Fig. 1c). These 
‘gap maps’ enable one to quickly hone in on color blocks that are 
deemed to be most related by hierarchical clustering.

Heat maps in which both rows and columns are clustered cre-
ate blocks of similarly colored cells that are easy to spot. However, 
when data with inherent ordering of columns are visualized as heat 
maps (for example, those from time series or dose-response stud-
ies), clustering is only applied to the rows. With these types of data 
it is necessary to understand how the fluctuations in color sequence 
across a row relate to time or concentration. In such cases an effec-
tive plotting alternative is the parallel coordinate plot (Fig. 2). The 
reliance on spatial encoding not only enables more accurate read-
ing of absolute values, complex trends are easier to understand as 
captured by an undulating profile graph than with color. Parallel 
coordinate plots are particularly well suited for highlighting small 
discrepancies between samples. As these parallel coordinate plots 
layer information, graphing data with more than a few dozen pro-
files will make it difficult to distinguish profiles.

Next month, we will look at high-dimensional data display and 
explore how additional information can be added to networks and 
heat maps.
COMPETING FINANCIAL INTERESTS  
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Heat maps
Heat maps are useful for visualizing multivariate 
data but must be applied properly.

Heat maps represent two-dimensional tables of numbers as shades 
of colors. This is a popular plotting technique in biology, used to 
depict gene expression and other multivariate data. The dense and 
intuitive display makes heat maps well-suited for presentation of 
high-throughput data. Hundreds of rows and columns can be dis-
played on a screen. Heat maps rely fundamentally on color encod-
ing and on meaningful reordering of the rows and columns. When 
either of these components is compromised, the utility of the visu-
alization suffers.

Using color to represent numbers in a table is an old idea; an 
example is from 1873 by the French economist Toussaint Loua 
(Fig. 1a)1. Color is a relative medium and can be unreliable when 
used to represent discrete values. Whereas one can be strict in trans-
lating a number to a color, the resulting color may not be perceived 
as intended; the same color may look different depending on the 
color of neighboring cells (see August 2010 column)2. Data visual-
ization relies on communicating with images, and the discordance 
between what we ‘should’ see and what we ‘actually’ see needs to 
be considered in designing and selecting effective representations.

Heat maps are typically used to show a range of values, and 
designing an appropriate color map is essential to highlight one or 
both ends of that spectrum. A divergent color gradient defined by 
three hues (for example, from blue to white to red) will make the 
low and high ends of the range visually distinct. In contrast, a gra-
dient created by varying the lightness of a single hue is effective at 
highlighting one extreme. A grayscale with range of 10–90% black 
works well as a linear color map. Avoid red-green as a color combi-
nation because it limits accessibility to information for colorblind 
individuals.

When used with suitable color scales, clustering can dramatically 
affect our ability to see structure in heat maps. After rows and col-
umns are arranged according to similarity, previously undetectable 

Figure 1 | Heat maps. 
(a) An example of a 
colored table from 
ref. 1. (b) Clustering 
brings like next to 
like items to reveal 
patterns in the data. 
(c) Adding gaps 
according to the 
hierarchical cluster 
tree helps emphasize 
relationships in the 
matrix.

Figure 2 | Parallel coordinate plots. (a) Gene expression data shown for 
two groups of profiles (blue and purple). (b) The data from a with each row 
plotted as a profile and each column as a vertical axis. 
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Integrating data
Different analytical tasks require different visual 
representations.

Different data types have their own inherent structure that makes 
specific visualization techniques most fitting. For example, a matrix 
of gene expression values for given cell measurements can be highly 
informative when displayed as a heat map or parallel coordinate plot. 
The challenge is finding visualizations that will effectively combine 
data types. Many research studies depend on integrating data to com-
prehend underlying processes. Here we explore ways to merge data 
that are best represented as heat maps and node-link diagrams: two 
common but disparate graphing techniques.

Visualization approaches that are aimed at merging two or more 
graphical forms need to strike a balance between the optimal repre-
sentation of one data type versus the other. As we discussed in pre-
vious columns, networks are naturally displayed as node-link dia-
grams or adjacency matrices1, and the most effective visualizations 
for expression matrices are heat maps or parallel coordinate plots2. 
The goal of blending multiple data types into a single visualization is 
to discover correlations, common trends or potential causal relation-
ships that would otherwise be difficult to deduce from the constituent 
data sets.

The design of a combined visualization depends on what the analy-
sis task calls for. Take, for instance, a matrix containing expression 
data of genes over time or under different conditions (Fig. 1a) and a 
network defined by the interactions of the corresponding gene prod-
ucts (Fig. 1b). If the intention is to understand how changes in gene 
expression might be explained by how the genes are regulated, replac-
ing the nodes in the interaction network with the expression profiles 
is a practical approach (Fig. 2a). The ‘heat strips’ make it possible to 
quickly find nodes in the network with uncommon or specific expres-
sion profiles. This strategy also allows one to study the behavior of 
individual expression profiles in the context of a network, but its utility 
is limited to a handful of time points.

With data sets containing more time points, examining each time 
point in succession is more manageable. To do this, use color to indi-
cate the expression levels of the nodes in the network and allow users 
to interactively step through the sequence of frames (Fig. 2b). In this 

way, one can repeatedly toggle between states to understand the differ-
ences in expression between two time points in one or a small group 
of genes in the network. Although our perceptual system is exquisite 
at detecting changes between two consecutive images, using such an 
interactive ‘sequence of stills’ approach requires the viewer to keep in 
memory what he or she sees between frames and essentially limits 
the analysis to pair-wise comparisons. Alternatively, by plotting the 
networks as ‘small multiples’ arranged in a line or a grid, where each 
instance of the node-link diagram represents a time point, we can 
minimize the viewer’s need to remember complex patterns (Fig. 2c). 
The ability to simultaneously see multiple time points also enables 
one to look for correspondences between a dozen or more conditions.

The suitability of the approaches discussed above strongly depends 
on the question one is trying to answer. Distinct graphing techniques 
emphasize different aspects of data and the ability to see data in dis-
crete forms enables deeper understanding of the subject under study. 
It is useful to have tools that implement all or at least several of them 
in a single interface. A compelling example is the Cytoscape plugin 
Cerebral3, which offers linked visualizations for a detailed node-link 
diagram, small multiple views of the interaction network as well as 
a parallel coordinate plot of expression profile. Such tools are well-
suited for data exploration as they facilitate the process of switching 
between different data views and analysis tasks.

In future columns we will explore the design of data representations 
in genome browsers.
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Figure 1 | Different representations for different data types. (a) Heat map 
showing gene expression levels across time. (b) A network relationship of 
the gene products from a.
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Figure 2 | Integrated views of data. (a) The complete expression profile for 
each node is displayed in the context of a network. (b) A network contains 
the expression values at one time point; users can interactively view time 
points in sequence. (c) Same as b, except all time points are presented 
simultaneously.
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Representing the genome
The choice of visual representation of the linear genome is guided 
by the question being asked.

Many genomics techniques produce measurements that have both 
a value and a position on a reference genome. The genome coor-
dinate provides a natural ordering to these data values and is the 
organizing principle driving how we commonly display and navigate 
genomic data today. A popular plotting approach is to arrange the 
linear genome coordinate along the x axis and express the data value 
range on the y axis (Fig. 1a). This conventional representation is 
limiting. By using other organizational frameworks we can better 
extract the information of interest and make sense of its patterns.

The genomes of many model organisms are large and pose a con-
siderable display challenge. For example, the human genome is over  
3 billion bases long. Using a 1-point line (0.014 inch thick) to rep-
resent each base of chromosome 1 would require a sheet of paper 
over 50 miles long. The initial human genome research article1 uses 
extensive roll folds to create condensed ‘chromosome maps’ (Fig. 1b).

One way to build a condensed overview is to divide the genome 
into equally sized chunks and report a summary value for each. 
This works well if the features are large and exceed the chunk size. 
But if the features are much smaller than the divisions, impor-
tant information will often be obscured. This is why images that 
capture large swaths of the genome provide poor overviews of  
relatively small features such as genes. The interactive zoom of 
genome browsers addresses this problem by enabling researchers to 
inspect the genome at different scales. By zooming in, chunk sizes 
can be made ever smaller thereby increasing our ability to resolve 
compact features of interest.

An approach to creating a more meaningful overview is to isolate 
only the features of interest. By removing the intervening portions of 
the genome, we bring the relevant signals together for effective side-
by-side comparisons while preserving the linear genomic context 
(Fig. 2a). The University of California Santa Cruz Cancer Genomics 
Browser enables researchers to limit the display to a set of genes, for 
example, those belonging to specific biological pathways. The result 
is a balance between overview and detail.

Another strategy is to leave the genome intact and maximize the 
amount that is displayed. For example, the genome can be arranged 

according to space-filling curves such those described by mathema-
ticians Giuseppe Peano and David Hilbert2 (Fig. 2b). This presen-
tation has the advantage of representing adjacent positions with 
adjacent pixels; however, some distortions are unavoidable, and 
some proximal pixels will correspond to distant loci. Although this 
method uses space efficiently, it restricts the view to a single data 
set and requires the same limiting summarization across genomic 
chunks as described for linear overviews.

In displaying genomic data we are faced with a trade-off between 
focusing on data features in isolation and seeing them in context. 
There are times when the spatial arrangement of features along the 
genome is of little interest and the genomic ordering can be aban-
doned altogether. Regions of interest can be extracted and stacked 
vertically along common reference points, such as transcriptional 
start sites (Fig. 2c). This allows them to be sorted using various met-
rics to reveal patterns. Summary statistics complement the consider-
able amount of data that are typically displayed with this approach.

These techniques do not account for the three-dimensional pack-
aging of the genome. As we better understand how the genome 
folds, we will likely change our approach to organizing and access-
ing genomic data. For example, open and closed chromatin have 
been observed to occupy different spatial compartments. Grouping 
data by whether they coincide with one or the other of these states 
may prove more informative than an arrangement on the linear 
genomic coordinate.

Next month, we will examine the challenges posed by com-
paring data from multiple experiments as we move from look-
ing at features along the genome’s x axis to information spanning  
the y axis.
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Figure 1 | The immense scale of genomic space. (a) Example of data features 
from human chromosome 1 (reprinted from ref. 1). (b) Roll fold showing 
chromosome maps from the initial human genome publication1.
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Figure 2 | Different ways to display genomic data. (a) Accordion view with 
transcriptional start sites (arrows) intact and intervening sequence removed. 
(b) Hilbert curve display of data across a chromosome. (c) Stack of regions 
from a centered on transcriptional start sites with hypothetical summary 
statistics plotted.
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POINTS OF VIEW flipped end to end (inversions), requiring us to also account for 
their orientation. 

A natural solution to depict structural variants is to draw 
arcs between the breakpoints on a linear layout of the reference 
genome (Fig. 1a). This representation effectively conveys a small 
number of structural variants spanning similar genomic ranges, 
but it is impractical for linear genome browsers because it is dif-
ficult to display long-range arcs. Using a circular layout, as with 
a Circos ideogram1, constrains the distance between any two 
points, making the display of arcs compact (Fig. 1b). However, 
this design, as with linear layouts, is prone to overplotting; dis-
playing many arcs will give rise to visual clutter. 

Although arcs effectively highlight the positions of break-
points in the reference genome, the order and orientation of 
these sequences in the variant genome are not explicitly dis-
played. For example, interpreting that sequence J is followed by 
Kʹ and sequence K is followed by Jʹ in the translocation shown in  
Figure 1a,b requires readers to learn the conventions of these 
graphics. Alternatively, we can directly depict the rearrange-
ment of reference sequences in the variant by using color (Fig. 
1c). However, color-coding the chromosomes does not capture 
changes in orientation such as inversions. Another approach 
that explicitly captures sequence orientation is the dot plot (Fig. 
1d). The axes of the dot plot correspond to the two genomes 
being compared, and the points indicate sequence identity. The 
order and orientation of the sequences in both genomes can be 
read directly: diagonal lines indicate corresponding sequence 
segments, and the horizontal offsets highlight reordering. The 
trade-off for directly depicting the variant sequence as a color-
coding or dot plot is that only one variant-reference sequence 
pair can be expressed at a time.  

All of the images presented so far are based on a genomic 
coordinate system, which heavily emphasizes the distances 
between breakpoints. It might be more biologically meaningful 
to focus on the consequences of the breakpoints instead of their 
genomic arrangement. For example, perhaps we should highlight 
gene fusions, particularly those whose fused segments are in 
frame. One way to address these functional questions is to move 
away from the genome coordinate system and use a different 
representation, such as a graph, where nodes represent the 
uninterrupted sequence segments and arrows indicate sequence 
order (Fig. 1e). The layout is then based on maximizing the 
readability of the connections rather than on preserving the 
linear order of the genome coordinate. Relevant metadata, such 
as the presence of an in-frame gene fusion could be emphasized 
with edge attributes such as color. 

As we look for alternative ways to capture the number and 
diversity of genomic variations, it will be critical to ensure that 
biologically relevant features are made most noticeable.
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Representing genomic 
structural variation 
Techniques for displaying relations between distant 
genomic positions.

With a rapidly growing collection of genomes coming from such 
initiatives as the 1000 Genomes Project, the days of a single ref-
erence genome are numbered. Although the genomic sequence 
between any two human individuals differs only by about 0.1%, 
there are abundant structural and copy-number variations of dif-
ferent types and sizes. Effective visualization of these genomic 
variations is required to gain insight into the genetic basis of 
human health and disease. However, variation data pose new 
challenges to traditional genome visualization tools, which 
depend on linear layouts and have difficulty depicting large 
structural rearrangements.

A structural variant consists of a DNA sequence, typically  
>1 kilobase, that deviates from a reference sequence in content, 
order and/or orientation. Depicting such a structural difference 
requires showing both the variant and reference sequences. The 
sequence boundaries of a structural variant, so-called ‘break-
points’, span a wide range of distances and affect sequence seg-
ments of varying size. For example, tandem duplications may 
involve a localized repetition of only a few kilobases, whereas 
the breakpoints of translocations are located on nonhomologous 
chromosome arms and may result in the rearrangement of large 
genomic chunks. Finding a representation that enables one to 
track breakpoints across this scale can be challenging. This is 
exacerbated by the fact that variant genomic fragments can be 

Figure 1 | Representations of a translocation. (a,b) Linear (a) and circular (b)  
reference genome layouts with an arc to depict a translocation between two 
chromosomes (pink and blue). (c) Translocation illustrated as reference-
sequence segments with chromosome colors corresponding to those in a. 
(d) Dot plot indicating positions of identical sequences in the variant and 
reference genomes. (e) Graph of common sequences (nodes) and their order 
in variant and reference genomes (solid and dashed arrows, respectively).
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y axis that makes comparing 
the shapes and heights of peaks 
easier than having the profiles 
arranged in separate and verti-
cally stacked tracks. The draw-
back with overlaid histograms 
is that some data is obscured. 
Furthermore, deciphering con-
stituent tracks in the overlay can 
be nontrivial because of color 
mixing.

Heat maps provide another 
form of compaction (Fig. 2b). 
In this approach, peak heights 
are depicted as value intensi-
ties in which taller peaks pro-
duce darker bands. Although 
this representation takes up 
less space, it can be difficult to 
evaluate quantitative informa-
tion from intensity alone. Heat 
maps are best suited for distin-
guishing broad value ranges, 
such as the highs from the lows. 
Employing a divergent color 
gradient can help emphasize 
the extremes.

Unlike compaction, summarization provides higher-level rea-
soning about the data at the expense of data details. When data 
is presented as it is collected—as one track per experiment—the 
resulting number of tracks can be overwhelming, making it dif-
ficult to find relevant trends. Summarization involves computing 
metrics across experiments to create a novel portrayal of the data 
(Fig. 2c). For example, the metric could be a simple average or a 
more domain-specific value, such as chromatin state inferred from 
combinations of chromatin modifications2. With the details hid-
den, researchers can focus on global trends and more readily pri-
oritize points in the data that warrant deeper inspection.

Compaction and summarization are both required to tackle the 
challenges posed by the ever-growing genome browser track stack. 
Although the examples presented in this column focus on data from 
sequencing-based technologies, the principles of compaction and 
summarization generalize to other data types. There is great poten-
tial for innovation in the development of new summarization meth-
ods. However, these abstractions are unlikely to replace primary data 
altogether; rather, the more verbose track displays will be shown as 
a second layer of information. This would require genome browsers 
to support a hierarchy of summary tracks with distinct sub-tracks 
showing the original data.
Cydney Nielsen & Bang Wong
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Managing deep data in 
genome browsers
Techniques are at hand for taming the ever-growing 
number of data tracks.

Obtaining genome-scale data has never been easier. In addition to 
sequencing genomes, biologists now routinely profile epigenomes, 
transcriptomes and proteomes. There are exciting opportunities to 
better understand genome regulation by integrating diverse data 
types into unified views. Visualization facilitates data interpreta-
tion, but designing meaningful visual depictions of these data is a 
challenge.

Most genome browsers arrange data from different experiments 
vertically and align them to a reference coordinate. This arrange-
ment of stacked data rows, or ‘tracks’, facilitates comparisons between 
diverse data types. However, as the number of tracks grows, it becomes 
increasingly difficult to see all of the data and to find meaningful pat-
terns (Fig. 1). Because different data types warrant different graphi-
cal representations, the process of displaying disparate data creates a 
high degree of visual complexity. The ability to reorder and color-code 
tracks helps to organize information, but researchers urgently need 
ways to manage the overwhelming depth of genomic data.

There are several strategies available to reduce this visual com-
plexity. With each there is a trade-off between gaining a meaningful 
overview and losing data details. Finding the balance depends on 
the resolution at which the data need to be analyzed. Two popular 
approaches to dealing with the track depth in genome browsers are 
(i) compaction, which preserves the original data but presents them 
in a more succinct and graphically economical way, and (ii) summa-

rization, which replaces the 
original data with an abridged 
view.

Compaction is a practical 
approach to reclaim valu-
able screen space. The most 
straightforward compaction 
technique is to make each 
track of a browser shorter. 
A more extensive approach, 
however, is to coalesce mul-
tiple tracks into a single row 
(Fig. 2a). The University 
of California Santa Cruz 
Genome Browser1 uses trans-
parency to overlay so-called 
‘wiggle’ tracks. These histo-
grams displaying dense con-
tinuous data are common in 
genome browsers and their 
characteristic shapes can be 
highly informative. Placing 
the histograms in front of one 
another gives them a shared 

Figure 1 | Genome-scale data 
as depicted by the University of 
California Santa Cruz Genome 
Browser1.

Figure 2 | Examples of reduced visual 
complexity. (a) Individual histogram 
tracks are made partially transparent 
and collapsed into a single track. 
(b) A heat-map view replaces peak 
heights with color intensity and 
requires less display space.  
(c) Summarization of data vertically 
into biologically meaningful 
categories.
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POINTS OF VIEW

Mapping quantitative 
data to color
Data structure informs choice of color maps.

Data can be classified in many ways. One useful method of clas-
sifying data for visualization is to distinguish between those with 
and without an inherent order. For example, a set of species (such 
as Escherichia coli, Drosophila melanogaster and Homo sapiens) has 
no intuitive ordering and is considered ‘categorical data’, whereas a 
list of gene expression values is ‘ordered data’ because we can sort 
them from lowest to highest. In a previous column, we described 
methods for color-coding categorical data (August 2010)1. Here we 
focus on creating color maps for quantitative data. 

Color is arguably one of the most important graphical assets for 
data presentation, from medical imaging to pie charts. By varying just 
three primary components of color (hue, saturation and lightness), 
color can fulfill a number of fundamental communication needs: 
to label, to show quantities, to represent or simulate reality, and to 
enliven or decorate. It is imperative that we choose color purposefully 
to highlight the salient features of the data we intend to depict. Even 
though color encoding does not result in the most accurate visual 
representation of quantitative data, color is often the best choice for 
compact visualizations of large data sets. 

Unlike categorical data, the elements of quantitative data can 
be placed on a numerical scale that describes their relative posi-
tion and size with respect to one another. This interrelationship of 
quantitative data requires that we exercise care in designing color 
maps that are perceptually consistent with the range and change in 
magnitude found in the data. 

When depicting quantitative data, it is useful to first define the 
key regions or points in the data range that we intend to highlight 
before designing a color-coding scheme that varies the three com-
ponents of color. Often this requires determining the aspects of 
the data we want to make apparent. In many cases, the meaning-
ful range will be the extremes—the minimum and/or maximum 
values. Additionally, there can be numerical values between the 

extremes with special meaning, such as zero. In some cases, this 
number could be unique to the defined data range, such as ‘sea level’ 
for maps or 32° on the Fahrenheit temperature scale. 

Although color hue is well suited for categorical data, it tends 
to be impractical for quantitative data. With quantitative data, we 
principally rely on color value and reserve hue to indicate different 
segments of the data range. When plotting data with only positive 
or negative values, an intuitive encoding is a sequential color map 
that varies only the lightness from 10% to 90% black (Fig. 1a). Such 
a color progression produces even transitions throughout the range. 
There are two possible options for fitting such a color map to the 
data: we can translate the ends of the color gradient to (i) zero and 
the theoretical maximum value or (ii) the observed minimum and 
maximum. The former approach allows us to interpret the data in 
the context of the theoretical data range (Fig. 1a). However, if high-
er contrast is needed from the graphical representation and zero 
is irrelevant as a reference point, then it is reasonable to map the 
lowest observed value to the lightest color and the highest observed 
value to the darkest color (Fig. 1b). 

In circumstances where the data have more than two regions of 
interest, it is necessary to design a color schema with multiple fac-
ets. A common scenario involves data containing both positive and 
negative values, in which the lower and upper ends of the distribution 
as well as zero need to be distinguished. In this case, a diverging (or 
bipolar) color schema that employs both color hue and color satura-
tion is effective. Use color hue to make a distinction between positive 
and negative values (for example, red and blue) and color saturation to 
indicate the relative scale, with more saturated color depicting values 
of greater magnitude and no saturation representing zero (Fig. 1c). 

The interpretation of zero or other key values can further influ-
ence the choice of color keys. Geographical elevation maps use 
keys that make the zero crossing visually explicit (Fig. 1d). This is 
achieved by using different colors for the values immediately below 
and above zero, respectively. Whether such a color map is appro-
priate for the data depends on how variable the data are and the 
meaning of zero for the interpretation.

It is essential to select the type of the color maps appropriate for 
the data. Some analytical software tools use a divergent color map as 
a default. When this is inadvertently applied to data ranges without a 
zero crossing, the data may be misrepresented because an increase in 
data values might not be reflected by an increase in color saturation 

(Fig. 1e). When designing color maps, there 
are two resources we like that do not require 
the user to supply all of the color expertise. 
They are the Pennsylvania State University’s 
ColorBrewer (http://colorbrewer2.org/) and 
NASA’s Color Tool (http://colorusage.arc.
nasa.gov/ColorTool.php#1). 
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Figure 1 | Color maps. (a) Sequential color gradient from 10% to 90% black. (b) A sequential color 
schema mapped to observed data range. (c) Divergent color gradient varying in hue and saturation.  
(d) Blended-hue color map. (e) Schematic illustration of a misleading representation due to misaligned 
data and color properties.
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expression or biological networks do not generally benefit from 3D 
spatial representations and are most useful when plotted using tech-
niques that do not require depth cues.

In most instances, high-dimensional data can be reliably and effi-
ciently visualized with representations that place elements on a 2D 
plane and use size or color to encode further dimensions of the data 
(Fig. 2b). If one of the data dimensions is categorical and there are 
only a few categories, shapes can be used to encode the categories. 
Many general data visualization approaches are available to effectively 
represent multidimensional data on a plane. For example, a matrix of 
scatter plots each showing pairwise combinations of variables from 
a high-dimensional data set can productively reveal correlations. 
Similarly, heat maps and parallel coordinate plots1 are useful tech-
niques for plotting multidimensional data on a plane. If some infor-
mation loss is acceptable, dimensionality reduction methods such 
as principal component analysis or multidimensional scaling can be 
used to obtain a 2D representation of a high-dimensional data set.

When a 3D spatial representation is chosen, the impact of occlu-
sion should be minimized. In interactive visualizations, animated 
rotation of objects of interest is a common solution to show hid-
den surfaces. Additionally, semitransparent surfaces can be used to 
allow the viewer to look through or into objects, but this practice 
typically creates unintended visual artifacts, especially when color 
is also employed. When labels are required to describe 3D scenes, it 
is preferable to place them after the projection to the 2D display has 
been computed. If placed directly in the 3D scene, the labels may 
be distorted by the projection and become difficult or impossible 
to read.

Effective 3D spatial visualizations can be created by taking the 
properties of the data into account and applying depth cues that best 
support the visualization’s communication goals. If such visualiza-
tions are applied to abstract data, the resulting visualization needs to 
offer significant benefits over nonspatial representations of the data.
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Into the third dimension
Three-dimensional visualizations are effective for 
spatial data but rarely for other data types.
When working with high-dimensional data, it may be tempting to 
choose a three-dimensional (3D) spatial visualization over a two-
dimensional (2D) ‘flat’ representation because it allows us an addi-
tional data dimension. However, because quantitative, categorical and 
relational data are often not representing spatial relationships, plotting 
them in 3D space adds a level of visual complexity that often makes 
the data more difficult to understand. It therefore can be more effec-
tive to plot these data on a 2D plane and rely on nonspatial graphical 
encodings to represent additional dimensions.

For certain types of data, 3D spatial visualization is the best choice. 
For example, X-ray crystallography data describe the location of atoms 
in a molecule and thus characterize something that is inherently spa-
tial. By visualizing the organization of these atoms in 3D space, we can 
reveal the molecular structure. Spatial data lend themselves to visual 
representations that reflect the 3D location information of the mea-
surements—often crucial for the interpretation of the data (Fig. 1).

Two-dimensional projections of objects use visual depth cues 
to represent a third dimension. The strongest visual cue indicating 
depth is partial occlusion, in which one object hides parts of another. 
Another depth cue is the perspective created by converging paral-
lel lines, which enables us to estimate the distances of objects from a 
certain vantage point. These depth cues are essential to depicting 3D 
objects on 2D displays (Fig. 1).

When data are plotted in 3D space, the visual cues needed to indi-
cate depth may interfere with commonly used visual encodings. 
For example, the height or length of objects can be distorted by per-
spective, making it difficult to judge the scale of elements in a plot. 
Unavoidably, data objects in the foreground will interfere with the 
visibility of elements further from the viewer (Fig. 2a). When color 
is used to represent quantities, shading or shadows cast onto objects 
as depicted by the computer software can lead to further ambiguities.

The choice between a planar and a spatial representation should 
depend on whether the interference between visual encodings and 
depth cues constitutes an acceptable tradeoff given the goals of 
the visualization. Abstract data such as those generated for gene  

Figure 1 | Space-filling model of the DNA backbone. Depth cues enable us to 
perceive two-dimensional images as three-dimensional objects.

Figure 2 | Three-dimensional representation of abstract data. (a) Data 
occlusion and interference of visual encodings with depth cues can be 
problematic in three-dimensional space. (b) The same data as in a plotted as 
a two-dimensional heat map.
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readily explored using a grid of scatter plots that represent all pair-
wise combinations. 

The choice between a parallel coordinate plot and a scatter plot 
matrix depends on the analytical task to be supported. The fundamen-
tal difference in the approaches is how they represent individual data 
features across multiple dimensions. A data point in a parallel coordi-
nate plot is depicted as a single line or a profile (Fig. 1a,b). Together, 
the ‘bundles’ of lines point out clusters, and outliers therefore become 
apparent. A scatter plot matrix, on the other hand, represents a data 
feature as a series of points that are not connected across the scatter 
plots, making it difficult to draw conclusions about individual data 
features (Fig. 1c). However, scatter plot matrices can be used to effi-
ciently identify pairwise correlations and other relationships between 
all dimensions in the overall dataset based on the characteristic shapes 
of the point clouds.

These methods complement each other and will deliver the best 
results when used in an interactive setting in which multiple coordi-
nated visualizations of the same data set are available. Along with heat 
maps and dimensionality reduction tools, fundamental 2D visualiza-
tion methods can be powerful approaches to multivariate data.
COMPETING FINANCIAL INTERESTS
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POINTS OF VIEW

Power of the plane
Two-dimensional visualizations of multivariate data 
are most effective when combined.
High-dimensional data pose a significant analytical and represen-
tational challenge. One instinctual response has been to represent 
data in three-dimensional (3D) space in order to capture additional 
information1. Given the common medium utilized for science com-
munication, great utility can be achieved by pushing the communi-
cative power of the endless 2D planes that surround us in the form 
of pieces of paper, computer monitors and video projections.

Data visualization methods such as parallel coordinate plots and 
scatter plots displayed in an array can be highly useful 2D visu-
alization techniques for high-dimensional data. They represent 
data using location on a plane, and each has its own strength for 
highlighting different aspects of the data. Many data analysis tasks 
involve looking for clusters, trends and outliers, and well-chosen 
and well-designed 2D plots can be highly advantageous in revealing 
patterns in data.

A fundamental 2D plotting technique is the use of parallel coordi-
nates (Fig. 1a,b). The characteristic appearance of these plots comes 
from their unique coordinate system: the coordinates are parallel 
rather than orthogonal to each other. Each vertical axis depicts a dif-
ferent dimension with data values scaled between a minimum and 
a maximum (Fig. 1a). Data points belonging to the same row are 
connected by line segments, which allows individual data features 
to be shown in the context of the overall data set.

Parallel coordinates can handle a variety of data types simulta-
neously. For example, gene expression data and other quantitative 
multivariate data over time or multiple conditions are often visual-
ized using a special case of parallel coordinate plots in which each 
dimension is of the same type and all axes are scaled to the same 
range (Fig. 1b). This approach enables accurate comparisons across 
dimensions. In addition, these types of plots can also represent data 
sets that contain categorical, ordinal or  quantitative dimensions.

By relying on robust graphical encodings, parallel coordinate plots 
make certain data relationships clear. For example, the appearance of 
many crossing lines between a pair of axes indicates an inverse rela-
tionship between the corresponding dimensions, whereas parallel 
(or nearly parallel) lines could suggest correlation between variables 
represented by neighboring axes (Fig. 1a,b). These types of features 
are easy to see in parallel coordinate plots. However, these plots are 
not well suited for data dominated by categorical information or 
data ranges that pass through only a small number of values, as data 
occlusion becomes a problem.

When using parallel coordinates, ensure that the axis height and 
the distance between the axes are adjusted so that the average of 
the absolute values of all angles is close to 45 degrees. The aspect 
ratio of the overall plot influences the angle at which line segments 
appear between axes. Proper shaping of parallel coordinate plots will 
improve the viewer’s perception of the axe’s orientation and make it 
easier to spot line crossings—useful for tracing individual profiles.

Scatter plot matrices are another common planar visualization 
method for multivariate data (Fig. 1c). In this plotting technique, 
pairwise relationships between all dimensions of a data set can be 
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the cognitive process because we frequently need to stop and think 
about ‘how’ to do something.

The process of drawing is linked to the process of thinking, and creat-
ing mental models can help us gain insights into scientific data. By exter-
nalizing our knowledge to a tangible form, for example, we create oppor-
tunities to exchange interpretations and to clarify meaning with our 
colleagues. In educational settings, drawing has been shown to improve 
comprehension of scientific concepts in schoolchildren. Students were 
found to perform markedly better after they had been prompted to gen-
erate, justify and refine visual representations of classroom material1.

One function of drawing is to augment our short working memory. 
Visual working memory describes our ability to retain visual infor-
mation in order to achieve a specific task (such as reading a map). 
It is difficult for us to remember the attributes of more than a few 
objects for longer than several seconds. The table shown in Figure 1b  
describes a simple network where connections between the nodes 
(arranged as rows and columns) are indicated by filled cells. Reading 
the connections successively and storing them in memory to create a 
mental picture of the underlying network is not trivial. By portraying 
the same information as a diagram, we can overcome the limitation 
of our working memory and easily see complex relationships such as 
the number of intervening nodes between any pair of nodes (Fig. 1c).

The history of science is full of examples documenting the impor-
tance of drawing and sketches in the creative scientific process. Ronald 
Vale and his colleagues used drawings such as the ones shown in 
Figure 2a to build the intricate molecular picture that illustrates how 
the kinesin motor protein achieves its forward motion. Visual depic-
tion of their data makes clear that the interactions of a kinesin dimer’s 
neck linkers limit the protein’s physical movement to ‘foot-over-foot’ 
as it travels along the microtubules (Fig. 2b).

Visualization is vital to the scientific process. Relying on the power-
ful connection between thinking, seeing and understanding, explor-
atory drawing is critical for creating frameworks for knowledge.
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Figure 2 | Drawing of a scientific process. (a) Sketches and notes from 
R. Vale and R. Milligan. (b) An animated model of kinesin traveling 
along microtubules by Graham Johnson (http://www.youtube.com/
watch?v=YAva4g3Pk6k). Images courtesy of R. Vale.

POINTS OF VIEW

Pencil and paper
A unique set of tools facilitate thinking and 
hypothesis generation.

Creating pictures is integral to scientific thinking. In the visualization 
process, putting pencil to paper is an essential act of inward reflec-
tion and outward expression. It is a constructive activity that makes 
our thinking specific and explicit. Compared to other constructive 
approaches such as writing or verbal explanations, visual representa-
tion places distinct demands on our reasoning skills by forcing us to 
contextualize our understanding spatially.

Words afford us a level of ambiguity that is not extended to pictures. 
For example, although a protein can be described verbally in general 
terms as being intracellular, making a picture of an intracellular protein 
forces us to be specific about the cellular compartment in which the 
protein resides. Even if we use the most generalized depiction of a cell, 
indicating the position of the protein requires us to place it either in 
the cytoplasm, inside the nucleus or somewhere in between (Fig. 1a).  
Though all locations within the cell abide by the original parameter of 
‘intracellular’, the interpretation of the illustration is more direct: the 
protein would be understood as being cytoplasmic, nuclear or associ-
ated with the nuclear membrane (Fig. 1a).

Visual depictions demand that we continually evaluate the premise 
of our understanding. Making quick sketches or doodles as a way to 
rationalize information can expose gaps in our thinking and lead to 
alternative conclusions and new ideas. It is useful to approach explor-
atory drawing with some abandonment of visual accuracy. We have 
a tendency to expect the objects we depict to look like the objects 
themselves. This expectation of technical mastery is likely the reason 
that so many adults give up drawing as an exercise. When drawing, 
it is productive to work quickly to refine sketches in order to explore 
many possibilities.

Pencil and paper provide an immediacy that is unmatched. The 
medium allows us to use whatever is within arm’s reach: the back of a 
journal, a Post-it note or the napkin from lunch. There is no learning 
curve with pencil and paper as there often is with software designed 
for generating graphics. The typical input devices for computers (that 
is, keyboard and mouse) are woefully inadequate for supporting the 
kinds of expressiveness and fluidity that is required to engage the 
mind. The practical aspects of the digital medium often interfere with 

Figure 1 | The utility and constraints of drawing. (a) The nature of drawing 
requires spatial specificity. (b) Nodes are ordered as rows and columns, and 
connections between nodes are indicated as filled cells. (c) Drawing the 
data in b reveals the underlying data structure and extends the capacity of 
working memory.
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POINTS OF VIEW

Visualizing biological 
data
Data visualization is increasingly important, 
but it requires clear objectives and improved 
implementation.
Researchers today have access to an unprecedented amount of 
data. The challenge is to benefit from this abundance without 
being overwhelmed. Data visualization for efficient exploration 
and effective communication is integral to scientific progress. 
For visualization to continue to be an important tool for discov-
ery, its practitioners need to be present as members of research 
teams.

One of the goals of data visualization is to enable people to 
explore and explain data through interactive software that takes 
advantage of human beings’ ability to recognize patterns. Its suc-
cess depends on the development of methods and techniques to 
transform information into a visual form for comprehension. It 
is a process that synthesizes skills from engineering, statistics and 
graphic design along with a number of other disciplines.

In recent years we have witnessed a growing appetite for the 
visual display of information. The ease of generating sophisti-
cated computer graphics has encouraged the use of visualization. 
However, the value and utility of this popular form of commu-
nication remains unclear. We can easily be fooled into believing 
that we absorb more than we do when looking at large, colorful 
displays of information.

Data visualization, when applied to scientific research, has to 
be more than just the graphical display of information. Clear 
objectives are needed to drive design so we can assess the utility 
and practicality of visualizations. What is it that the research-
ers want to and need to see in the data? Which computational 
approaches and visual encodings will best bring out the trends? It 
is essential for the visualization practitioners to work side by side 
with the researchers to ensure that design decisions are continu-
ally refined to meet research objectives.

Unfortunately, there are few models for highly integra-
tive teams consisting of visualization experts and biological 
researchers. The existence of distinct professional meetings and 
publication venues may be partially responsible for the barrier 
to working together. For example, the major professional meet-
ings in information visualization such as Visualizing Biological 
Data (VIZBI) and BioVis (part of the Institute of Electrical and 
Electronics Engineers’ VisWeek) attract few biologists. As a con-
sequence, advances in visualization are not adequately described 
and shared with the biological community.

Identifying shared funding sources will certainly help to unite 
the professions under a common set of responsibilities and deliv-
erables. Unfortunately, it is uncommon to hear stories in which 
agencies supporting scientific research have been successfully 
convinced to fund visualization efforts. Without the tight work-
ing relationships of an integrated team, we give up the ability to 

rapidly turn sketches into software prototypes at a pace relevant 
to the research: as data types and research questions evolve, there 
is a constant need to refine and adapt visualizations. One funding 
mechanism that has enabled an integrated focus on visualiza-
tion in the context of biological research is supplemental sup-
port associated with awarded grants. The primary objective of 
such work is to extend the utility and accessibility of the research 
findings.

It is useful to recognize that not every biological question will 
benefit from visualization, and graphical approaches should 
therefore be reserved for projects for which they will produce the 
greatest impact. Many data challenges can be addressed perfectly 
with computation alone. For a subset of research questions, how-
ever, visualizations can offer specific advantages over computa-
tion. In instances when we do not yet know the regularities in the 
data, visualization provides a powerful approach to explore the 
data for patterns. Visualization can also be useful for projects in 
which it complements algorithmic approaches. In genomics, for 
example, automated processes can reliably find sites where rear-
rangement occurs, but visualization is then needed to provide a 
mental image so that the detail of structural variation can be fully 
appreciated and understood (Fig. 1).

Data visualization represents a powerful aid to understanding 
data because well-designed graphical depictions of information 
can replace arduous cognitive assessment with simple perceptual 
inferences. For this reason, visualization can have a significant 
impact in biology, especially in the age of big data. For the last 
two and a half years, I have covered visual strategies for depicting 
scientific data. Although Points of View will go on hiatus after 
this month, these columns represent part of Nature Publishing 
Group’s commitment to meeting visual communication chal-
lenges of scientific data.
Bang Wong
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Figure 1 | Visualization of whole-genome rearrangement. Representative 
Circos plots1 of whole-genome sequence data from two different tumors 
showing gene duplications and chromosome rearrangements. The outer 
ring depicts chromosomes arranged end to end. The inner ring displays 
copy-number data in green and interchromosomal translocations in purple. 
Reprinted from ref. 2 with permission from Elsevier.
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such as axis ranges, can be easily overlooked (Fig. 2a). Make sure that 
outliers do not compress the dynamic range of the bulk of your data—
use bar or axis breaks, but always be sensitive to the journal’s policies 
on breaks and the fact that these elements can disguise important pat-
terns.

When they are densely labeled, axis ticks burden the figure with 
repetition. This applies specifically to views of data across large 
genomes, which are filled with repeating nonsignificant zeros. 
Innovative strategies exist2 to keep tick label complexity low while 
maintaining usability (Fig. 2b).

Grids are used to establish sight lines to compare proportions and 
relate positions to axis ticks. The number of grids powerfully suggests 
the scale at which differences are important. Faced with a dense grid, 
the readers will conclude that they should pay close attention to minor 
fluctuations in the data and infer that the degree of uncertainty is low. 
Do not send this message falsely. Furthermore, dense grids impede 
accurate judgment, as tracing them to their axis labels is confounded 
by increased density (Fig. 3a). Ultimately, no grid may be better than 
a badly chosen one—use a grid when needed rather than by default.

Patterns in data can be quickly obscured if too much ink is used for 
grids. The grid should be dark enough to be seen clearly (anticipate 
that LCD projectors will wash out light colors) but not so dark as to 
appear as a fence in front of data. A useful guideline is to use 15% as 
the minimum grid opacity. Maximum opacity should be 25%–45%, 
in proportion to the figure’s data density (Fig. 3b).

A common example of functional layering of information modali-
ties is found in maps. The next time you navigate a map, take note 
of the strategies used by the cartographer to generate a hierarchy of 
meaning between place names, terrain type, elevation and landmark 
annotations, as you relate these features to elements in your figures.
Martin Krzywinski
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POINTS OF VIEW

Axes, ticks and grids
Make navigational elements distinct and 
unobtrusive to maintain visual priority of data.

Figures that present large amounts of quantitative information can 
be more accurately assessed when complemented with effective axes, 
ticks and grids. These navigational elements provide scale and aid in 
accurate assessment of lengths and proportions.

Navigational cues must be distinct from the figure’s primary infor-
mation. The Gestalt principles1 inform us how to use line width, color 
and transparency to achieve this (Fig. 1). At all times, keep the data-
to-ink ratio high by using the least amount of ink for navigational 
elements.

If your data have a coordinate system, the figure’s axes are the foun-
dation and are critical in orienting the reader. Axis weight should be 
modest—0.5 pt is sufficient—and unless the figure is particularly 
large, you should avoid bounding it by axes on all sides. This con-
tainment is often mistaken for organization, which can be other-
wise achieved by a suitable amount of negative space. Refrain from 
placing arrows on axes—their orientation is almost never in doubt. 
Multipanel figures should maintain fixed scales when possible to 
facilitate comparison because variation in nondata components,  

Figure 1 | Retain the salience3 of primary data by making navigational 
elements visually distinct. (a) Gestalt principles of ground and similarity 
describe why we have difficulty visually organizing information in a figure in 
which the same line style is used for different purposes. (b) Visual layers are 
established by assigning different thickness and style to axes, contours and 
cluster boundaries.

Figure 2 | Avoid unnecessary variation and repetition in axes and ticks.  
(a) If absolute differences are important, maintain axis scaling across 
panels. Draw a single y axis to emphasize that the scale is fixed. In bar plots, 
use breaks to shorten outlier elements that would otherwise compress the 
dynamic range of the data. (b) Duplication of nonsignificant digits in tick 
marks should be reduced or removed altogether by adjusting the units.

Figure 3 | Control grid density and transparency to maintain separability from 
data and other grids. (a) User studies in which readers were asked to assess the 
proportion of bar heights show that the density of grid lines is correlated with 
judgment error4. (b) Grid line transparency is most effective in the range of 
15%–45%, depending on data density4.
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Schematics and illustrations should be designed to incorporate 
labels and callouts seamlessly, not as an afterthought. Take advantage 
of any freedom in placing components to create evenly spaced and 
intuitively grouped labels (Fig. 3). In the redesigned treatment of the 
tumor schematic (Fig. 3b), several cells have been relocated to make 
labels uniformly spaced with the help of a horizontal grid system. 
Uniform arrangement can be achieved using the ‘distribute objects’ or 
‘distribute spacing’ tools, available in most applications (for example: 
in Illustrator, find the settings under Window > Align). 

Capitalization is a type of variation, and thus is best limited by ter-
minology or journal requirements. When possible, do not mix singu-
lar and plural forms (for example: in Fig. 3a, CC and ICs), define acro-
nyms consistently (IC should be IIC) and be aware of the uncertainty 
caused by a single term without an acronym (ICC).

Limit the diversity in length and angle of callout lines. Note how 
none of the callouts for immune inflammatory cells in Figure 3a are 
horizontal; their symmetric layout in Figure 3b is more harmonious. 
Radial call lines can help lead the eye back to the figure, particularly if 
they appear to diverge from a single location. If your software permits, 
place callout lines in a different layer to evaluate their arrangement 
independent of other elements. If they appear as a jumble of lines, 
chances are that their placement can be further optimized. Refrain 
from using bubbles, bursts or other distracting visual trinkets.

Organize your figures by following the overarching principle that 
variety should be informed by data, not formatting. 
Martin Krzywinski
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Figure 3 | Schematics with many callouts are improved by consistent line 
lengths and angles and uniform label spacing and alignment. (a) Unnecessary 
variation in callout lines and labels creates a disorganized figure. Reprinted 
from ref. 5 with permission from Elsevier. (b) Use horizontal callout lines; and 
if angled lines are necessary, use a fixed angle (30 or 45 degrees). Terminate 
the lines consistently at the edge of the corresponding element. Align labels 
if callout line length can be made approximately the same (left); otherwise, 
terminate the lines to follow the curvature of the schematic.

POINTS OF VIEW

Labels and callouts
Figure labels require the same consistency and 
alignment in their layout as text.

Last month we showed how thickness and tone can be used to make 
axes, ticks and grids more effective by keeping them distinct from 
data. The principle of visual separability applies equally to labels, as 
do two strategies that are frequently overlooked: consistency and 
alignment. These are especially relevant for labels that are attached 
to the figure by a connecting line (callouts).

Complex figures rely on labels to identify components, define 
terms and acronyms, and focus the reader’s attention. Labels should 
be formatted according to sound typographic principles1. Use one 
typeface of fixed size with alignment to enhance the perception of 
similarity and grouping in accordance with Gestalt principles2.

Data labels should be positioned consistently in relation to their 
data points (Fig. 1). Use a placement priority scheme (Fig. 1c) to 
reposition labels when a fixed positioning would otherwise create 
awkward or ambiguous placement. Avoid aligning scatter plot labels 
to one another because this can weaken the association between the 
point and its label. Labels are annotations and thus are subordinate 
to their data points, not to other labels.

Keep labels concise but clear (Fig. 2). Remove common text that 
can be relegated to the legend, such as “-cldn” in Figure 2a. Because 
we are better at identifying differences when spatial variation is con-
trolled, explore ways to present labels in alignment, using tab lead-
ers where necessary to connect them to the figure (Fig. 2c). When 
in doubt, adhere to convention to maintain recognizability—space 
saved at the expense of clarity is not a good bargain.
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Figure 1 | Place data point labels consistently while avoiding ambiguity. 
(a) Association of labels with points is muddled when the labels are 
inconsistently positioned. (b) Distance and alignment of labels should be 
fixed relative to their corresponding data points. (c) Priority strategies 
remove the guesswork in placing labels3.
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Figure 2 | Keep labels simple and easy to compare: refactor common text 
and align related components. (a) Avoid encoding the same information 
twice: for example, species need not be conveyed by both color and 
code4. (b,c) Shorter labels are parsed much faster (b), especially if their 
components are independently aligned (c).
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Elements of visual style
Translate the principles of effective writing to the 
process of figure design.
We all use words to communicate information—our ability to do so 
is extremely sophisticated. We have large vocabularies, understand 
a variety of written styles and effortlessly parse errors in real time. 
But when we need to present complex information visually, we may 
find ourselves ‘at a loss for words’, graphically speaking.

We can rationalize figure creation by applying principles of effec-
tive written communication. By leveraging our training and experi-
ence with words, we can turn graphical improvisation into a struc-
tured and reproducible process in which we assess and optimize 
each part of a figure just as we would each paragraph, sentence and 
word in a manuscript. Let’s look at how Strunk and White’s classic 
but stern The Elements of Style1 can be applied to figures. (I encour-
age you to revisit your own favorite writing resources in the context 
of visual representation.) 

A popular example of disregarding Strunk and White’s dictum 
“Do not take shortcuts at the expense of clarity”1 is the syntactical-
ly correct but incomprehensible sentence “Buffalo buffalo Buffalo 
buffalo buffalo buffalo Buffalo buffalo”2. Unfortunately, visual ana-
logs of this construct appear all too frequently in the literature. If we 
cannot parse this eight-word sentence, how can we cope with the 
complexity of Figure 1?

Strunk and White also ask us to avoid overwriting because 
“rich, ornate prose is hard to digest, generally unwholesome, and 

Figure 1 | A flood  
of identical 
symbols triggers 
semantic satiation, 
a phenomenon in 
which overwhelming 
repetition results in 
loss of meaning. As an 
accurate but visually unparsable representation of a breakpoint graph5, the 
figure breaks Strunk and White’s rule “Do not explain too much.”1

sometimes nauseating”1. The visual equivalent is “chartjunk,” a 
term coined by Tufte3. Examples are shimmering textures, gradi-
ents and a proliferation of shapes (Fig. 2), which all make inter-
preting the data more difficult, act as exclamation marks that 
make selective emphasis impossible, and “can never rescue a thin 
data set”3. If you cannot easily emphasize an element in your fig-
ure, chances are that it is overstated.

To reinforce the content and function of related ideas, use the 
visual equivalent of parallel construction and “express coordinate 
ideas in similar form”1. Choose shapes and colors that intuitively 
embody overlap, category hierarchy and importance (Fig. 3).

Keep in mind the needs and experience of your audience and 
“place yourself in the background”1: do not rely solely on your 
personal aesthetic (for example, black text overlaid on your favor-
ite color may lack sufficient contrast to be legible). Instead, strive 
for simplicity and clarity. “Use definite, specific, concrete lan-
guage”1. Be legible without shouting. Concise, but not opaque.

In his play Horace, Corneille wrote, “Un premier mouvement 
ne fut jamais un crime” (“A first impulse was never a crime”)4.  
But in the process of making figures, it can be. Avoid the tempta-
tion of going with your first idea. Instead, use it as the starting 
point and then refine and clarify your message. A good figure, 
like good writing, doesn’t simply happen—it is crafted. “Revise 
and rewrite”1 becomes “revise and redraw.”
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Figure 2 | Use the simplest visual representation6 for objects and “omit 
needless words”1. (a) Visually garnished elements shout at the reader, who 
is at a loss to determine what is important. If you wouldn’t write it this 
way, don’t draw it either. (b) Simple shapes provide an elegant presentation. 
Complex shapes may carry unintended meaning (such as unduplicated 
versus duplicated chromosomes). In schematics, reserve the use of color for 
emphasis, where possible.

Figure 3 | Objects that interact or share common meaning should be formatted 
in a similar way that appeals to intuition. (a) Venn diagram colors should 
be selected to naturally communicate overlap. This can be automated by 
using blend modes in applications such as Illustrator or Inkscape. (b) Entity 
similarities in pathway diagrams are hard to identify when diverse icons are 
used. When only tone varies, FOSL1 immediately stands out from the FOX 
gene family. (c) Symbols in a series should reflect the concept of progression 
as naturally as possible. For example, immune cells aren’t actually a different 
shape, and it is not intuitive that pink cells should give rise to red cells.
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Plotting symbols
Choose distinct symbols that overlap without 
ambiguity and communicate relationships in data.
Scatter plots require us to visually assemble data point symbols into 
patterns so that we can understand the relationship between the vari-
ables. Symbols can therefore have a large impact on figure legibility 
and clarity. Well-chosen symbols mitigate the effects of data occlusion 
and maintain the visual independence of different data categories.

In plots with one data category, the primary concern is to mini-
mize data occlusion caused by overlapping symbols. Here the open 
circle is the best choice. In contrast with other common geometric 
shapes (such as squares, triangles and diamonds), the intersection of 
a circle with another circle does not form an image of itself (that is, 
another circle) (Fig. 1). The benefit of the open form is that overlap-
ping instances build up regions of denser ink on the page, which can 
be a practical substitute for density maps.

Multiple data categories should be encoded with distinct symbols 
that form strong visual boundaries (Fig. 2a). Symbols that have simi-
lar appearances can be easily missed on first inspection, especially in 
regions where symbols overlap. Insufficient symbol contrast can make 

it difficult to identify each data category. The most common shapes in 
plots—polygons—blend and lack distinctiveness. Luckily, user studies 
in symbol discrimination offer guidance for putting together a versa-
tile symbol set1,2.

If there is clear and simple distinction between data categories, it 
may be possible to use the first letter in the category name as a plotting 
symbol (Fig. 2b). This practice makes decoding figures easier because 

Figure 1 | The hollow circle is a flexible and robust plotting symbol.

the reader does not have to repeatedly refer to the legend, as long as the 
letters are visually distinct (for example, H, Q and X2).

Care should be taken that the shapes of plotting symbols appear to 
be the same size and have the same degree of complexity. For example, 
the five-pointed star draws considerably more attention than other 
symbols of the set in Figure 2c and may therefore bias readers to 
assign its category undue importance.

When available, color is a highly effective discriminator (Fig. 2d), 
but it should be used judiciously—its salience diminishes as the num-
ber of hues increases. Good color choices for data categories are the 
qualitative Brewer palettes (http://colorbrewer2.org/). These have 
been selected for their desirable perceptual properties. In the event 
that your communication will be reproduced in black and white, we 
suggest using symbols with a variety of fills for data sets with low over-
lap (Fig. 2e). When the density of data points is high, choose highly 
distinct symbols (Fig. 2f) that form strong visual boundaries3.

Often the categories of data points fall into natural hierarchies. 
For example, the data points could represent genes classified by type 
(such as ‘gene’, ‘nonprocessed pseudogene’ or ‘processed pseudo-
gene’) and their transcription state (‘off ’ or ‘on’) (Fig. 3a). If, within 
these categories, one state is deemed more relevant (for example, 
transcribed as opposed to nontranscribed), assign the symbols to 
reflect this hierarchy. Map salience to relevance4 by using symbols 
with greater visual weight (fill and/or color) to distinguish and elevate 
important data (Fig. 3b). The use of a single color is effective at isolat-
ing a single variable (Fig. 3c). Use less prominent symbols for data 
that are less relevant (such as reference data included for context).

When there is a large number of symbols, it may be difficult to 
discriminate among them no matter how well they are chosen. If 
your plot has more than six or seven categories, consider presenting 
the data in several panels with each showing a few data categories— 
a technique known as small multiples.
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Figure 2 | Symbol diversity can be achieved by varying shape, fill or color.  
(a) Symbols that contrast with one another make good combinations. (b) 
Letters simplify legend lookups, but many appear the same (such as C/G, B/R/P 
and E/F/H). (c) Shapes are powerful discriminators—but beware that, for 
a given width, they may appear to have different sizes owing to differences 
in areas. (d–f) Color is one of the differentiators (d). For black-and-white 
applications, vary the fills for low data densities (e) and use texture symbols 
when overlap is high (f).

Figure 3 | Symbols should encode natural hierarchies in data to simplify legend 
lookup and help reveal patterns. (a–c) The choice of encoding three different 
gene types in a is nonintuitive5 (for example, transcribed state is shown by 
a circular outline, repeating a shape already in use), and symbols overlap 
awkwardly (dotted regions). (b,c) Alternative symbol sets in black and white (b) 
and color (c).
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maintains the functional relationship between the proteins, making 
it possible to assess the drugs’ impact on the network, which is the 
intention of the study. Had the spatial encoding been used for the 
quantitative variables, as exemplified by Figure 1, this relationship 
would be muddled and the pathway analysis confounded. Figure 2 
scales well without being overwhelming—the original shows 392 dif-
ferent cell type–drug combinations1.

In planning the design for a complex figure, it is helpful to list the 
relevant variables of the experiment (Fig. 3a). The next step is to clas-
sify the variables and select the encoding method (Fig. 3b). Effective 
encodings will maintain the nesting and multiplicity of the data struc-
ture in the final version (Fig. 3c).

Tabular small multiples are well suited for applications that offer inter-
active exploration. The scope of data can be focused (such as by tran-
scription factors), the range of data narrowed (by high-potency effects) 
or the table rearranged. Remember that when presenting tabular data, 
the order of rows and columns can both reveal and hide patterns.

The final design (Fig. 3) is unencumbered and accommodates 
selective emphasis of pathways (via colored highlighting) or proteins 
(via thicker strokes). The ability to focus the reader’s attention on 
specific elements in displays of complex data is desirable and is made 
possible by a light visual style. Row and column numbers are used to 
aid data lookup.

In the design of your figures, look to leverage existing bio-
logical conceptual models to organize the presentation of your  
high-dimensional data.
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POINTS OF VIEW

Multidimensional data
Visually organize complex data by mapping them 
onto familiar representations of biological systems.

The biological researcher can access many methods to rapidly inter-
rogate molecular structures and mechanisms. Such experiments 
typically involve numerous independent variables, such as substrates, 
measurement modalities and experimental conditions. Many of these 
variables may be causally correlated, and the data likely address mul-
tiple hypotheses. This multidimensional complexity can make it dif-
ficult to design a figure that clearly presents both the structure and 
value of data in a manner relevant to the inquiry.

When communicating complex data, focus on their meaning 
instead of structure—anchor the figure to relevant biology rather  
than to methodological details. What are the interesting findings, and 
what representation would communicate them clearly? Answering 
these questions may mean forgoing the conventional approach to 
displaying multidimensional data (Fig. 1). Instead, it may be better 
to project the data onto familiar visual paradigms, such as a protein 
network or pathway, to saliently show biological effects in a func-
tional context.

An example of an effective presentation of multidimensional 
data is shown in Figure 2, from a study of drug effect on a net-
work of signaling proteins across a variety of immune cell types1. 
The figure uses the method of small multiples: each table cell is 
based on a schematic of the protein network, onto which quantita-
tive data are projected as colored circles. Rows and columns repre-
sent experimental conditions. The figure is readily understood by  
experimentalists because it leverages biological context to relate the 
organizational details of the experiment.

The design decision that makes Figure 2 so effective is the use of 
spatial encoding to present the data domain (the protein network). It 

Figure 1 | Dimensions can be encoded as spatial or visual elements, such as 
along x and y axes or by color, size or symbol. The number of dimensions and 
the selection and layering of encodings can have a profound effect on clarity.

Figure 2 | Overview of the impact of a drug class on a signaling network in 
different cell types. Colored circles encode EC50 and percent inhibition using 
the scheme in Figure 3c. Adapted from ref. 1.

Figure 3 | Design schematic for Figure 2, showing data structure, variable 
type and visual mapping. (a) Identification of nested data dimensions informs 
the levels of organization in the figure. (b) Data types and encodings used. 
(c) The protein dimension is spatially encoded into a diagram of the signaling 
network and tabulated by experimental condition. The adjacency of proteins 
signifies involvement in the same pathway, and vertical position relates to 
intracellular position. Protein nodes are combined into shapes. Perceptually 
accurate size and hue encodings2 are used for EC50 and percent inhibition.
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the figure provide the background necessary for this plot twist to be 
appreciated. The vertical scale is chosen to accentuate the similarity 
of the death rates for males due to cancer in aggregate and to lung 
cancer in panels 2 and 3.

We have previously encouraged the use of practical graphic design 
principles to inform the content and layout of figure panels. Now 
we propose that you apply the structural principles of storytelling to 
integrate multiple panels into a cohesive whole. Instead of “explain, 
not merely show,” seek to “narrate, not merely explain.”
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POINTS OF VIEW 

Storytelling
Relate your data to the world around them using 
the age-old custom of telling a story.

A recent column made the analogy between creating figures and 
writing. These are similar processes that benefit equally from clarity, 
precision and restraint1. Just as writing is made more compelling by 
a strong narrative, this principle also applies to the accompanying 
figures.

Stories have the capacity to delight and surprise and to spark cre-
ativity by making meaningful connections between data and the 
ideas, interests and lives of your readers. Science is “full of vexing 
questions, conflict, dead ends, insights and the occasional thrilling 
leap” and, as such, is “a story well told”2. At the Story Collider (http://
www.storycollider.org/), this approach to science reporting is exem-
plified by compelling narratives.

Familiar elements underpin most stories: introduction, question, 
conflict, buildup and resolution. These can also be applied to data 
graphics. For example, use the idea of a story arc and make your pre-
sentation episodic—unfold it, don’t dump it. In each part, make not 
only its content clear but its purpose easily discernible. This is particu-
larly relevant when communicating to the general public, who may 
lack sufficient background knowledge to identify what is relevant or 
why it matters. At the same time, do not underestimate your colleagues’ 
desire to be presented with a cogent exposition of your findings.

Maintain focus of your presentation by leaving out detail that does 
not advance the plot. Distinguish necessary detail from minutiae; do 
not give in to the desire to show all your hard-won data. Provide suf-
ficient support for your story, but stick to the plot. Inviting readers to 
draw their own conclusions is risky because even simple messages can 
hide in simple data sets (Fig. 1). Telling a story is as much a process 
as it is an art. To help you get started, consider the following: “If your 
study were reported in the newspaper, what would the headline be?”3.

An example of storytelling with data is shown in Figure 2. Targeted 
at a general audience, the information graphic motivates the effect 
of smoking rate on cancer statistics. The story begins with intrigue: 
cancer incidence is rising, but death rates are declining. The grim-
mer trend is presented first to immediately build tension. Insightful 
readers may expect that the primary reason is improved diagnostics 
and therapies, but the graphic surprises them by linking the inverse 
relationship to changes in smoking habits. The first two panels of 

Figure 1 | Use aggregation to reduce data detail and emphasize the message: 
there are relatively few middle-range values. (a) Many interpretations are 
possible. Is it important that first- and second-row values are odd and even, 
respectively? (b) Establish the desired level of detail by binning. Is the order 
of values important? (c) Display of values and counts in each range can be 
combined, discarding original order. (d) Every element speaks to the core 
message, which is now clear. Use conventional notation and symbols (such as 
an asterisk for statistical significance).

Figure 2 | A story adds meaning and clarity to complex statistics. Use 
multiple panels to establish flow, and use colloquial language when 
addressing a general audience. Light treatment of axes and grids maintains 
focus on data trends. Always be accurate, but balance qualitative and 
quantitative expositions. An occasional tangent (adult versus youth rates 
in panel 4) adds texture to the presentation without diluting the message. 
Make sure that figure and panel headlines satisfy journal style requirements. 
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source: American Cancer Society Cancer Statistics 2012; Monitoring the Future (University of Michigan).

Smoking is a major risk factor for many 
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the single largest preventable cause of 
disease and premature death in the US.

Impact of smoking on cancer deaths5

0 100

Percentage of cancer deaths
attributable to smoking

Oropharynx

Larynx
Esophagus

Stomach
Pancreas

Lung

Bladder
Kidney

0

1965 1990 2010

Decline in smoking
Since the 1964 first Surgeon General’s report, 
smoking rates have been dropping. By 2010, 
the rate among males was down to 20%, from 
50% at its peak. Among youths, rates have 
been on an even steeper decline since 1997.

4

Smoking prevalence (%)

25

50

Drop in lung cancer deaths in 
males is the primary reason 
why death rates are down.

Cancer death rates (per 100,000)
BY CANCER

Decline of lung cancer  3

1975 1990
0

100

2008

lung

adults

youths in
grade 12

prostate & breast

colon

1975 1990
0

300

2008

Cancer deaths have been 
dropping since 1991, 
especially in males.

OVERALL

Fewer deaths2Increased incidence

1975 1990
0

700

2008

Cancer incidence rates
(per 100,000)

An aging population 
contributes to rising
incidence of cancer.

1

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://dotearth.blogs.nytimes.com/2012/01/31/story-collider-where-science-is-a-story-well-told/
http://dotearth.blogs.nytimes.com/2012/01/31/story-collider-where-science-is-a-story-well-told/
http://www.storycollider.org/
http://www.storycollider.org/


NATURE METHODS | VOL.11 NO.2 | FEBRUARY 2014 | 117

THIS MONTH

POINTS OF VIEW

Bar charts and box plots
Creating a simple yet effective plot requires an 
understanding of data and tasks.

Bar charts and box plots are omnipresent in the scientific literature. 
They are typically used to visualize quantities associated with a set of 
items. Representing the data accurately, however, requires choosing 
the appropriate plot according to the nature of the data and the task at 
hand. Bar charts are appropriate for counts, whereas box plots should 
be used to represent the characteristics of a distribution.

Bar charts encode quantities by length, which is a highly accurate 
visual encoding and preferred over the angle-based strategy used in 
pie charts (Fig. 1a). Often the counts that we want to represent are 
sums over multiple categories. There are several options to visualize 
such data using bar charts. Stacked bar charts (Fig. 1b) are the best 
choice if we are primarily interested in comparing the overall quanti-
ties across items but also want to illustrate the contribution of each cat-
egory to the totals. A common application for stacked bar charts is to 
visualize rankings that are derived from multiple attributes1. If, instead 
of the distribution of the overall quantities, we are primarily interested 
in the distribution of values in each category across all items, a layered 
bar chart (Fig. 1c) is the appropriate solution. Comparisons within 
each category are more accurate in layered bar charts than in stacked 
bar charts because layered bar charts provide a common baseline for 
the values in each category. However, if our primary goal is to enable 
comparisons of values across categories within each item while still 
enabling comparisons across items, then a grouped bar chart (Fig. 1d)  
is the ideal solution. If the quantities add up to the same total for each 
item, then a grouped bar chart is equivalent to multiple pie charts, 
yet a grouped bar chart affords more accurate readings of values and 
comparisons.

When we are dealing with quantities sampled from a population 
rather than with a set of counts, the data inherently contain uncertain-
ty (Fig. 2a). Intuitively, one might want to add error bars to bar charts 

to represent such uncertainty. However, because the bars always start 
at zero, they can be misleading: for example, part of the range covered 
by the bar might have never been observed in the sample. If our goal 
is to represent and compare distributions, we need a representation 
that more accurately reflects the data that underlie the visualization.

Box plots, also known as box-and-whiskers plots, encode five 
characteristics of a distribution by position and length (Fig. 2b,c), 
providing an effective summary of a potentially large amount of 
data2. The box ranges from the first (Q1) to the third quartile (Q3) of 
the distribution and represents the interquartile range (IQR). A line 
across the box indicates the median. The whiskers are lines extend-
ing from Q1 and Q3 to end points that are typically defined as the 
most extreme data points within Q1 – 1.5 × IQR and Q3 + 1.5 × IQR,  
respectively. Each outlier outside the whiskers is represented by an 
individual mark. Alternatively, the minimum and maximum value 
in the data set are used as end points for the whiskers. As further 
variations are possible3, it is crucial to always annotate the range of 
the whiskers. A convenient Web-based tool to create customized 
box plots is available at http://boxplot.tyerslab.com/ (ref. 4). Users 
can upload data, create and label the plot and export the figure in 
common file formats.

When designing bar charts or box plots, one should consider a 
few important recommendations. Order bars by height and boxes 
by medians to make the figures easier to read unless there is an 
implicit item order. Use zero as a base line for bar charts unless 
there is a reason for choosing a different reference point. To facili-
tate data interpretation and comparison tasks, add tick marks 
and, if necessary, grid lines of less weight than that of the axes to 
emphasize small differences5. Fill boxes and bars with solid color 
and forgo outlines; 8–12 colors are the maximum that readers will 
be able to differentiate.
Marc Streit & Nils Gehlenborg
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Figure 1 | Variants of bar charts and a pie chart encoding the same data. 
(a) Values in different categories are difficult to compare in pie charts.  
(b) Stacked bar charts enable comparison of overall values across items. 
(c) Layered bar charts support comparison of values within categories.  
(d) Grouped bar charts allow comparison of values across categories.

Figure 2 | Representation of four distributions with bar charts and box plots. 
(a) Bar chart showing sample means (n = 1,000) with standard-deviation 
error bars. (b) Box plot (n = 1,000) with whiskers extending to ±1.5 × IQR. 
(c) Probability density functions of the distributions in a and b. λ, rate;  
µ, mean; σ, standard deviation.
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Sets and intersections
Complex relationships demand trade-offs.
Sets are a universal concept in scientific data analysis. Bacterial spe-
cies found in a soil sample, enzymes discovered in a biochemical 
pathway, variants found in a genome, proteins detected in a serum 
sample by mass spectrometry or genes that are mutated in a cohort 
of patients with cancer can all be treated as sets. Although the goal of 
some studies is limited to the identification of such sets, a common 
task is the analysis of the commonalities and differences of multiple 
sets by intersecting them. We surveyed figures published in Nature 
between December 2011 and October 2012 and found 20 figures 
with a total of 51 diagrams depicting intersections of up to 6 sets.

Sets and their intersections are straightforward to visualize up to 
three or four sets. If, however, the number of sets exceeds this trivial 
threshold, visualization of the intersections is a major challenge. 
Whereas 3 sets have only 8 possible intersections, 10 sets have 1,024 
possible intersections, as there are 2n possible intersections for n sets.

Intersections of sets are commonly illustrated using Euler or Venn 
diagrams. Euler diagrams represent intersecting sets as overlapping 
shapes, typically circles or ellipses, that are often drawn so that their 
area is proportional to the number of elements they represent. Venn 
diagrams are identical to Euler diagrams with the exception that 

Venn diagrams show all possible intersections, including empty 
ones, which are not drawn in Euler diagrams.

Euler diagrams (Fig. 1a) are suitable to represent the size of the 
intersections of two or three sets. The diagram should be rendered 
in an area-proportional manner, so that the size of the overlapping 
areas conveys information about the intersection sizes, making the 
visualization more efficient. This representation of intersection sizes 
is not as accurate as the use of position or length1, but the small 
number of intersections and the fact that Euler and Venn diagrams 
are well known because of their use as an aid in teaching set theory 
make this an acceptable trade-off. Approximately area-proportional 
Euler diagrams using circles can be plotted with the venneuler  
R package2. Because many area-proportional Euler diagrams can-
not be drawn accurately using circles, an alternate approach is to 
use ellipses, which produces area-proportional solutions in more 
cases. A tool to create such diagrams is EulerAPE (http://www.
eulerdiagrams.org/eulerAPE/).

Effective visualization of intersections for more than three sets 
requires a more scalable approach than Euler diagrams. One solu-
tion is to encode all set intersections in the columns of a matrix 
using a binary pattern and to render bars above the matrix columns 
to represent the number of elements in each intersection (Fig. 1b). 
The bars can be log-transformed to accommodate large variations 
in intersection size and can be sorted to show the distribution of 
intersection sizes. Depending on the task, the bars can also be sorted 
by set combinations to group the intersections by the number of 
sets that are overlapping or to place all intersections of a particular 
set next to each other. When a large number of sets is being plot-
ted, empty intersections can be removed to save space. To be able to 
judge intersection sizes in the context of set sizes, bars representing 
the latter can be plotted along the rows of the matrix. An interactive 
tool to generate such visualizations in a web browser is available at 
http://vcg.github.io/upset/.

Plotting all intersections of 10 or more sets at once is usually not 
feasible. Depending on the data and the questions, however, it can 
still be beneficial to plot the sizes of all pairwise intersections using 
a clustered heat map (Fig. 1c). For context, the set sizes should be 
plotted as a bar chart along the rows or columns of the heat map. 
This type of encoding supports qualitative judgments about the dis-
tribution of pairwise intersection sizes and the presence of clusters 
of highly overlapping sets, but it hides information about higher-
order intersections.

Because of combinatorial explosion in the number of set inter-
sections, trade-offs are almost always necessary when visualizing 
these data. Understanding the tasks that the diagrams are meant to 
support and being aware of the data structure are required to find 
an appropriate representation.
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Figure 1 | Set visualization techniques. (a) Euler diagram displaying the 
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map showing pairwise intersections of 15 genes. In contrast to a and b, the 
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Temporal data
Use inherent properties of time to create effective visualizations.

Time plays a central role in most studies of living things. When pre-
senting and exploring temporal data, scientists can employ the unique 
properties of time to design compelling visualizations. Time is uni-
directional, provides a natural order for events and has an inherent 
semantic structure. Temporal data are often cyclic and exhibit repeat-
ing patterns. The visualization challenge is that time, unlike spatial 
dimensions, cannot be directly perceived by humans. 

In general, there are three common approaches for visualizing tem-
poral data: time is encoded using position, brightness or saturation, 
and/or animation. Position, which is a very effective visual variable, 
should be considered first. Examples are line charts and bar charts, in 
which time is mapped to the horizontal axis. The bar chart in Figure 1a  
shows the confirmed influenza cases from the World Health 
Organization FluNet database (http://who.int/flunet) for the United 
States between 2010 and 2014. Although a recurring seasonal pattern 
with a peak in the winter months is clearly visible, it is hard to judge 
the shift in the influenza season onset across different years. When 
dealing with recurring patterns, take into account the cyclicity inher-
ent in the data by breaking the time dimension into corresponding 
intervals and aligning these intervals to emphasize the recurring pat-
tern. To show aligned data, consider a layered or grouped bar chart1 
or a superimposed line chart, which support simultaneous compari-
son of peak location and peak height (Fig. 1b). Because of the cyclic 
nature of the data, the horizontal axis can be shifted to emphasize the 
recurring pattern. If the cycle length is changing over time, break the 
data into intervals of variable length and normalize them to a uniform 
cycle length to emphasize the recurring pattern, or leave the intervals 
unchanged to illustrate the difference in cycle lengths.

A common alternative to line charts and bar charts for cyclic data 
with recurring patterns are radar charts that use polar coordinates to 
project the data onto a circular plane (Fig. 1c). Radar charts are often 
applied because of their visual appeal and have the advantage that they 

produce a continuous curve over all cycles while also supporting the 
comparison of patterns across multiple cycles. However, as plots that 
use radial layouts are harder to interpret owing to distortion, choose 
linear layouts unless there is a compelling reason to show a continuous 
curve for aligned cyclic patterns.

Sparklines2 are another technique to show temporal data in a high-
ly condensed form that still allows pattern comparison (Fig. 1d).  
Because they are designed to show qualitative aspects of the data, 
sparklines do not require scales or axes, which enables effective 
visualization of large numbers of measurements over time that can 
be integrated into tables or directly into the text. Note that jour-
nals might have style constraints that prevent such applications of 
sparklines.

If all spatial dimensions are mapped to other variables, such as in 
a scatter plot, time can be represented for a selection of the items as 
traces that show the location over time by plotting all time points for 
the selected items and connecting them with lines in their temporal 
order (e.g., the “Trails” feature of GapMinder, http://www.gapminder.
org/world). These traces can be enhanced by additionally encoding 
time in the brightness or saturation of the data points to emphasize 
the temporal order. Traces are an efficient visualization of trends, but 
identifying the position of items in their respective traces at a given 
time point is difficult.

Animation maps time to time and is an alternative approach if 
visual variables such as position and saturation or brightness are 
already in use. Animation is an encoding that is intuitively under-
stood, but it limits our ability to detect recurring patterns and com-
pare across multiple time points. As it is expected that interactive 
plots will become more prevalent in scientific publications, the use 
of animation to convey temporal patterns must be carefully judged 
against alternatives such as small multiples3.
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Unentangling complex 
plots
Carefully designed subplots scaled to the data are 
often superior to a single complex overview plot.
Factorial experiments are frequently used to investigate different 
combinations of independent variables (e.g., dose, strain, temper-
ature or gender) on a response variable. Plotting their outputs can 
present a variety of challenges—the interaction plots or time-course 
response curves for each factor combination may vary in range, noise 
level and trend. Let’s look at how we can mitigate these issues by orga-
nizing the data into small multiples, each cropped and scaled to a 
different range to emphasize relative changes while preserving the 
context of the full data range to show absolute changes. These strate-
gies can be used with nonlinear scaling (e.g., logarithmic, probit, logit 
or reciprocal) to increase the dynamic range and resolution and to 
linearize Gaussian and sigmoidally shaped data.

A single plot scaled to show all the data is likely to be a jumble of 
lines—patterns will be difficult to discern owing to overplotting, 
data occlusion, inadequate separation of the visual channels for each 
variable combination, and compression of detail in data traces with 
a small range (Fig. 1a). If traces can be grouped by nonoverlapping 
ranges, axis breaks can help separate them, but this will affect the 
perception of absolute differences. Variable combinations can be 
distinguished using colors, dashed lines and symbols, but in a tight 
space it can be difficult to find encodings that are easily distinguish-
able. An even greater challenge is to include uncertainty (e.g., error 
bars) without complicating the graphic further. As a result, figures 
of this type are confusing because many features are battling for 
emphasis, hindering our perception of categories, patterns and rela-
tionships. The design is being unduly influenced by the dimensions 
and constraints of a single plot rather than structure of the data.

When categories have similar ranges, small multiples may solve the 
problem1 (Fig. 1b). When data ranges differ, we may need to crop or 
truncate an axis to account for different maxima or minima between 
categories. However, truncated scales may be deceptive and create dif-
ferent interpretations of a graphic2. Therefore, any adjustment to scale 
ranges needs to be clearly presented.

One approach is to apply progressively decreasing axis trunca-
tion relative to the whole data range across the small multiples 
and emphasize the changes in scales using reference lines and 
background highlights (Fig. 1c). Simpler visual encodings are 
required because each panel subsequently contains fewer catego-
ries; context can be maintained by subtly displaying remaining 
data in the background. Care must be taken to avoid too much 
embellishment, which can complicate the plot and shift emphasis 
away from the data.

When data categories differ in both minima and maxima, a single 
plot will illustrate differences in scale but obscure patterns (Fig. 2a). 
Small multiples of the data (Fig. 2b) can be individually scaled by 
various schemes to emphasize patterns and metrics of interest 
(Fig. 2c–e). The choice of aspect ratio of the plots affects how slopes 
are perceived and compared—choosing one that orients the average 
trace to 45 degrees is a useful rule of thumb3. Small-multiple pairs 
showing the full and cropped ranges can highlight differences in 
absolute values, illustrate patterns and correlations across the range 
of each category and even unveil a storyline4 (Fig. 2f).

Making important features and patterns salient in each small mul-
tiple requires consistency in design elements. The result may require 
more page space but should be worth it.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Gregor McInerny & Martin Krzywinski

1. Shoresh, N. & Wong, B. Nat. Methods 9, 5 (2012).
2. Pandey, A.V., Rall, K., Satterthwaite, M.L., Nov, O. & Bertini, E. in Proc. CHI 

Conf. Hum. Factors Computing Syst. 1469–1478 (ACM, 2015).
3. Cleveland, W.S., McGill, M.E. & McGill, R. J. Am. Stat. Assoc. 83, 289–300 

(1988).
4. Krzywinski, M. & Cairo, A. Nat. Methods 10, 687 (2013).

Gregor McInerny is a Senior Research Fellow at the Department of Computer Science, 
University of Oxford. Martin Krzywinski is a staff scientist at Canada’s Michael Smith 
Genome Sciences Centre.

A B C D

CA DB

Drug
Dose 1 2 3

8

10

6

2
0

4

8

10

6

2

0

4

Dose 1 2 3

C DBA

1.0

1.5

1.5
0

0.5

5

5

8

8

10

0

b

c

a

Figure 1 | Small multiples and progressive cropping helps to compare 
data traces across various y-axis ranges. (a) Categories and patterns can 
be difficult to distinguish when all the time-course response data are in a 
single plot. (b) Small-multiple plots isolate and untangle the categories 
but lose context as categories are separated. (c) Subtle scale annotations 
provide context while maintaining clarity.

fa

b

c

d

e

Figure 2 | Make design choices that show trends in context. (a) In a single 
panel, categories with the widest ranges are often the most prominent. 
(b) Small multiples help navigation and simplify encodings. (c) Perception 
of differences is compromised across multiples for which minima, maxima 
or range vary. (d) Relative changes within categories are emphasized when 
panels are scaled within each category, but those between categories are 
difficult to judge. (e) Scaling to each category’s maximum while using a global 
minimum contextualizes variation between categories. (f) Use an overview and 
scaled detail to contextualize, highlight and examine each category. Colored 
backgrounds emphasize differences in scale expansion. A vertical layout helps 
in identifying common changes in patterns.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



NATURE METHODS | VOL.13 NO.1 | JANUARY 2016 | 5

THIS MONTH

POINTS OF VIEW

Pathways
Apply visual grouping principles to add clarity to 
information flow in pathway diagrams.

Pathway diagrams describe the connectivity and flow of informa-
tion in biological systems. Remarkably similar representations can 
depict everything from cell-signaling pathways to global ecological 
networks. 

Pathways are network diagrams in which molecules, cells or 
species are represented by nodes and their relationships by edges. 
Pathway diagrams benefit from strategies used to display networks1, 
but additional requirements must also be met. First, they must clear-
ly depict patterns in connectivity—the flow of information through 
the pathway, encoded by the direction of the edges, is often the 
primary purpose of the diagram. Second, both direct and indirect 
relationships need to be clear for one to understand the pathway 
as a whole. Encodings that remove indirect relationships, such as 
adjacency matrices, are therefore inadequate.

One can use visual grouping to help create a hierarchy for the flow 
of information in a pathway layout2 and clear alignment to emphasize 
node relationships. Edges should connect to a fixed number of points 
on node shapes (Fig. 1a). Basic arrowheads should be used; unneces-
sary stylizing or stretching of arrows should be avoided. Edge angles 
should be limited to multiples of 30° or 45°, and curved edges can 
be drawn easily using circular guides (Fig. 1b). We use 0.5-pt lines 
for edges and equilateral-triangle arrowheads with sides 2.5 pt long3.

Conventionally, we expect information to flow left to right and top 
to bottom. Diverging from this standard, as well as introducing asym-
metry in the layout, can emphasize differences but should be done 
sparingly and only when it adds to the reader’s understanding. Edges 
that loop back to upstream nodes should flow clockwise (Fig. 1b).

Placing nodes on a grid assists eye movement across the figure 
(Fig. 1c). Horizontal alignment of nodes emphasizes the flow of 
information through a pathway, whereas radial alignment high-
lights source nodes (Fig. 1d). Local deviation from the grid pattern 
may be necessary to avoid crossing of edges or collisions between 
arrowheads (Fig. 1c).

Strong relationships between pathway components can be illus-
trated using connection and enclosure4. Edges act to group nodes 
via connection, whereas enclosure can be used to group nodes in 
shared compartments, such as the nucleus (Fig. 2).

Associating nodes through similarity (e.g., color or shape) or 
proximity can highlight parts of a pathway without interrupting 
the groupings created by connection and enclosure. For similarity 
groups to be effective, unnecessary variation in the color or shape 
of nodes should be avoided, except when used to highlight nodes 
(Fig. 2b). Proximity grouping can be achieved with negative space—
an empty row or column on the grid around the group adds visual 
emphasis (Fig. 2b). Differences can be identified with labels or with 
an unambiguous shape associated with a specific protein class. For 
example, in Figure 2b we show the seven transmembrane domains 
of the GPCR, and the G protein as a green complex.

The use of grouping in pathway diagrams can provide alternate 
visual entry points. In a busy pathway, it can be difficult to work 
from start to finish through all possible paths. When important 
node subtypes are easily identifiable, a pathway diagram can be 
examined from several directions instead of strictly serially.

Adding labels to nodes is often a challenge—names of genes 
and protein complexes can be long, but altering node shapes to fit 
labels dilutes grouping effects (Fig. 2a). It is a good idea to choose 
node shapes that accommodate the longest label, or abbreviate 
names. Keep node colors desaturated to avoid loss of contrast with 
the text, and avoid visual garnishes such as gradients and drop 
shadows.

Next month we will explore how to encode multiple variables 
in pathway diagrams by taking a closer look at neural circuits.
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Figure 1 | Rectilinear and curved grids provide overall consistency. 
(a) Fix the number and position of connector points and distribute edges 
symmetrically in quadrants. (b) Create consistent edge curvature with 
grids based on circles and rounded rectangles. (c) Nodes positioned on a 
square grid with circular edge curvature. Connecting adjacent edges with 
overlapping arrowheads can be locally adjusted from their circular path 
(dotted line) by vertical stretching (orange) or shrinking (blue) of the 
edges. (d) Neighbors (gray) of a source node (dark gray) can be aligned 
horizontally (left) or radially (right). Arrow length can be altered in radial 
alignment to create groups. Curved (blue) and diagonal (orange) edges are 
locally adjusted from a 45° guide to avoid overlap between arrowheads.

Figure 2 | Creating a clear pathway diagram using a grid and directional 
information flow. (a) Example of a pathway diagram with unorganized 
information flow, unnecessary visual detail (e.g., membrane lipids) and 
no visual continuity along pathways. The dashed line represents the cell 
nucleus. (b) Pathway from a with redundant visual encodings removed and 
main points emphasized by visual grouping. Color and shape variations have 
been removed except for those highlighting a molecule of interest (orange), 
the products of the pathway (blue) and a membrane protein complex 
(green). Gray lines are layout guides and would not be included in the final 
figure; the solid lines provide a grid, and the dotted lines highlight the 
strong grouping effect of visual connection (circular paths) and proximity.

a db cNode
interface

Edge
curvature Layout and routing grid Square versus radial alignment

and curved versus diagonal edges

ba

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



NATURE METHODS | VOL.13 NO.3 | MARCH 2016 | 189

THIS MONTH

POINTS OF VIEW

Neural circuit diagrams
Use alignment and consistency to untangle complex 
circuit diagrams.

Neural circuit diagrams show connections between neurons or brain 
regions. They are similar to pathways1 but typically have more com-
plex connections and more variables, and they can be generated at 
different scales. Unfortunately, diagrams of even simple circuits are 
often unnecessarily complex, making understanding brain connectiv-
ity maps difficult.

A neural circuit is a network in which brain regions or individ-
ual neurons are the nodes and axonal connections are represented 
by directed edges. Edges can encode many variables but minimally 
designate the type of neurotransmitter, which determines whether a 
cell will excite, inhibit or modulate its targets. We recommend limit-
ing this encoding to line caps (Fig. 1a). Variables such as cell type, 
cell location (layer or brain region), cell morphology, the location of 
a synapse on a cell, the composition of neurotransmitter receptors 
on a cell and the strength or density of connections can be encoded 
using a combination of labels, node position, color and shape, care-
fully selected on the basis of their salience (Fig. 1b, c).

Encoding several variables without sacrificing information, while 
still maintaining clarity, is a challenge. To do this, exclude extraneous 
variables—vary a graphical element only if it encodes something rel-
evant2, and do not encode any variables twice.

We can apply strategies used to draw pathways1 to clarify the flow of 
information and highlight important features in circuits. If the physi-
cal locations of nodes are not important, nodes should be rearranged 
to clarify the circuit structure and limit the number of edge crossings. 
In Figure 2a, the position, color and labels all redundantly distinguish 
brain regions. By removing this redundancy and improving the layout, 
we make room for additional features to highlight circuit elements 
(Fig. 2b,c). Other strategies are shown in Supplementary Figure 1.

For neural circuits such as the brainstem auditory circuits, physical 
arrangement is a fundamental part of function. Another topology that 
is commonly necessary in neural circuit diagrams is the laminar orga-
nization of the cerebral cortex (Fig. 3). When some parts of a circuit 
diagram are anatomically correct, readers may assume all aspects of 
the figure are similarly correct. For example, if cells are in their appro-
priate layers, one may assume that the path that one axon travels to 
reach another cell is also accurate. Be careful not to portray misleading 
information—draw edges clearly within or between layers, and always 
clearly communicate any uncertainty in the circuit.

In some circuits, the location where an axon contacts a postsynaptic 
neuron can be important to circuit function. A synapse on a cell body 
may be different than a synapse on an apical dendrite, requiring some 
cell morphology to be encoded in the circuit diagram. However, to 
keep the diagram as clear as possible, do not show more morphologi-
cal information than necessary. Just because the apical dendrite must 
be shown does not mean all dendrites should be included (Fig. 3). 
Likewise, just because cell bodies are drawn in the diagram does not 
mean that the size and shape differences across cells are necessary. 
The goal is to convey a circuit as clearly and accurately as possible; 
extraneous variables, such as cell size, will unnecessarily complicate 
the presentation of your circuit.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper (http://dx.doi.org/10.1038/nmeth.3777). 
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Figure 1 | Use color and shape consistently to encode the type of 
connection and cell. (a) Use line caps or colors, but not both, for excitory 
(exc), inhibitory (inh) and neuromodulatory (mod) connections. Use 
colorblind-safe colors3. (b) A busy circuit diagram challenged by tight 
spacing and angled elements. Figure adapted with permission from ref. 4. 
(c) Applying consistent size, spacing and alignment of elements without 
rotation allows for the inclusion of additional relevant information, such as 
two populations of BNST neurons.

Figure 2 | Simplifying node arrangement and discarding unnecessary 
variables creates clear circuit diagrams without loss of information.  
(a) Placing nodes in a neural circuit anatomically makes routing edges 
difficult and patterns hard to spot. Adapted from ref. 5 with permission from 
Elsevier. (b) Same circuit with fewer edge crossings and without redundant 
color. (c) Same circuit with emphasis on node A. Curved edges assist eye 
movement.
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Figure 3 | Maintenance of brain region topology is necessary for some 
circuit diagrams. (a) Hypothetical cortical microcircuit depicted with 
common diagram errors: too much morphological detail, inaccurate or 
ambiguous edge paths, unnecessary variables and weak neurotransmitter 
encoding. (b) Clarified circuit diagram with emphasis on the two different 
output regions.

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://dx.doi.org/10.1038/nmeth.3777


NATURE METHODS | VOL.8 NO.1 | JANUARY 2011 | 1

POINTS OF VIEW

Negative space
Negative space, also known as whitespace, refers to the unmarked 
areas of the page. Collectively, it is the margins and the gaps 
between text blocks and images. Whitespace is as much a part of 
a composition as the titles, words and pictures. The Swiss typogra-
pher Jan Tschichold calls whitespace ‘the lungs of a good design’1. 
In addition to giving elements breathing room, judicious use of 
whitespace can dramatically improve the visual appeal and effec-
tiveness of figures, posters and slides.

The term whitespace stems from the printing practice in which 
white paper is generally used. Margins and gaps that separate 
blocks of text make it easier to access written material because 
they provide a visual structure. Well-planned negative space bal-
ances the positive (nonwhite) space and is key to aesthetic. Asian 
art makes wide use of negative space to create harmony and to add 
dimension to flat silkscreen prints.

The openings in and between objects can inform us about the 
objects themselves. A protein and the negative space masked in 
black are shown in Figure 1. Note how the reverse image implies 
and defines the shape of the protein (Fig 1b). It gives us almost as 
much information as the original image.

In science communication, unfettered empty space is rare. 
Presentations tend to be densely packed. Whitespace is a com-
modity we need to put to good use. Some people see whitespace 
as expendable and even as an indication that there is insufficient 
content to fill the page. After all, whitespace carries no informa-
tion, so what is the harm in filling it up? The harm is that over-
crowded slides and posters are taxing to comprehend. Usually this 
is due to the irregularity of the negative space.

A focus on the spacing of elements can help us create layouts with 
meaningful structure. One approach I find useful is to enclose imag-
es and text in boxes either literally or by visual estimation. Doing 
so makes the distribution of positive and negative spaces clear. A 
typical scientific poster not dissimilar to those we see at confer-
ences is shown in Figure 2a. A study of spaces reveals a labyrinth  
of shapes (Fig. 2b). The goal is to unify the whitespaces into regu-
larly shaped contiguous blocks. This can be achieved by align-
ing the boxes vertically or horizontally to create visual divides 
that inform the grouping of information. For example, we might 
use larger gaps to differentiate sections but thinner gutters to 

separate items within a section (Fig. 2c). In this way, the nega-
tive space can telegraph to readers the hierarchy and organization 
of content.

The approach described above requires us to manipulate many 
elements. It can be a challenge to size and tile the parts to fit a 
prescribed layout. Luckily modern software makes layout work 
fluid. We are constrained to scale images proportionally. However, 
we can radically alter the shapes and sizes of text blocks to make 
them conform to the available space. Text allows us to adjust the 
spacing between letters, the length of the lines and the spacing 
between those lines.

Additionally, whitespace offers one of the most effective 
ways to attract readers’ attention. In congested environments, 
applying brighter colors or special typographical styles such as 
capitalization or boldface may not be enough to get certain con-
tent noticed. In these situations, try surrounding the content to 
be emphasized with relatively more of the available whitespace. 
The generous framing will usually draw the eyes to that part of 
the page.

In the last six columns, I have discussed ways to visually encode 
data (color coding, design of data figures and salience) and meth-
ods for organizing elements on the page (Gestalt principles and 
negative space). Next month, I will review these ideas and apply 
the concepts to real-world examples.
Bang Wong

1. Ambrose, G. & Harris, P. The Layout Book (AVA Publishing, Lausanne, 
Switzerland, 2007).

Bang Wong is the creative director of the Broad Institute of the Massachusetts 
Institute of Technology and Harvard and an adjunct assistant professor in the 
Department of Art as Applied to Medicine at The Johns Hopkins University 
School of Medicine.
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Figure 1 | Empty space defines the shape of an object. (a,b) Ribbon diagram 
of a protein (a) and with the negative space masked in black (b).

a b

Figure 2 | Whitespace can be used to structure content. (a) An example of 
a scientific poster. (b) A space study reveals that contents in sections 1–6 
are scattered and whitespace is fragmented. (c) An example of consolidated 
whitespace organizing contents.
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POINTS OF VIEW

Points of review (part 1)
My goal over the next two months is to show concretely how 
scientific figures can benefit from design principles. I will 
review concepts from past columns by applying them to several  
published figures.

In the design of common objects, such as a door, when a handle 
is used many people will mistakenly pull even if the door is to be 
opened by pushing. When the handle is replaced with a flat plate, 
which affords pushing, people will know to push. When dealing 
with figures, we depend on visual cues. We want our figure’s layout 
to express its underlying meaning.

The diagram shown in Figure 1a is intended to illustrate three parts 
of a microscopy system1. We could redraw the figure so that the three-
fold nature of the system is apparent even at a glance. The Gestalt 
principles (November 2010 column)2 impart trends in visual orga-
nization; we tend to organize objects into groups, for instance, when 
they are placed near one another, connected by lines or contained in 
a common space. Using the principles of proximity, connection and 
enclosure we could sketch the general form of the microscopy system 
as shown in Figure 1b. By grouping the components related to each 
part of the system and placing those groupings in compartments, we 
create a visual structure that strongly reflects the message. The promi-
nent horizontal feature links the system together.

In arranging elements on the page, we inextricably affect the 
negative space (January 2011 column)3. Similar to the Gestalt 
principles, white space is another mechanism to organize content. 
For example, wider gaps can be used to separate major groupings 
whereas narrower spaces are left between more related objects. 
In Figure 1a there are large unused areas on the top right and 
on the left. Consolidating the empty spaces into more regularly 
shaped areas creates uniformity and helps to further delineate 
our defined groupings (Fig. 1b).

Meaningful compositions become more challenging to create 
when figures have many independent parts. A helpful strategy 
is to let the intent of the figure guide the 
layout. In Figure 2a a protocol for ana-
lyzing gene expression is illustrated4. 
The details of the process are presented 
in several steps. But the even distribution 
of graphical elements provides neither an 
intuitive path through the information nor 
visual cues for us to relate the parts to one 
another. One fitting structure is horizon-
tal groupings strung together vertically  
(Fig. 2b). We can rely on the principle of 
visual completion (December 2010 col-
umn)5 and line up the arrows between 
steps to connect and order the process. 
To differentiate the central path that 
traces the gene of interest from additional 
reagents, I used orientation and alignment 
to create salience (October 2010 column)6 

and set them apart. The added reagents are either misaligned or 
placed at an angle from the central molecules.

When showing sequential information, it is also helpful to use 
consistent language and representations so readers can more eas-
ily follow the story. In Figure 2a, the identifying barcode repre-
sented by the color green at the beginning is not the one captured 
at the end. These inconsistencies may require readers to redouble 
their steps when working through the figures.

Conceptual figures like the ones described above have an impor-
tant purpose; they provide context for readers to understand the 
experimental design and research results. 
Bang Wong

1. Tamplin, O. & Zon, L. Nat. Methods 7, 600 (2010).
2. Wong, B. Nat. Methods 7, 863 (2010).
3. Wong, B. Nat. Methods 8, 5 (2011).
4. Peck, D. et al. Genome Biol. 7, R61 (2006).
5. Wong, B. Nat. Methods 7, 941 (2010).
6. Wong, B. Nat. Methods 7, 773 (2010).
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Figure 1 | Layouts 
can express meaning. 
(a) Diagram of a 
microscopy system. 
Reprinted from Nature 
Methods1. (b) A 
sketch using grouping 
and white space to 
make the three parts 
of the system being 
illustrated more 
apparent.
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Bang Wong is the creative director of the Broad Institute of the Massachusetts Institute 
of Technology and Harvard and an adjunct assistant professor in the Department of 
Art as Applied to Medicine at The Johns Hopkins University School of Medicine.

Figure 2 | Visual structure that matches the message. (a) Illustration showing a gene expression 
analysis technique. Reprinted from Genome Biology4. (b) The same elements organized according to the 
purpose of the illustration, which is to show a sequence of steps.
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POINTS OF VIEW

Points of review (part 2)
I will continue to demonstrate how judicious choice of graphical rep-
resentations can improve visual communication. Here I will focus on 
data figures.

The power and primary purpose of graphs is to reveal connections 
in data. As opposed to tables, in which there is little visual association 
between individual values, graphs and charts depend on readers to 
form patterns. In reading graphs, we observe individual data points, 
keep each of them in memory and construct an image from the con-
stituents. The entire process can be exceedingly fast and attest to the 
power of visual perception. Graphical encoding needs to support the 
detection and assembly process of reading graphs.

We are more accurate at certain types of visual estimation than others 
(September 2010 column)1. For example, to understand relative differ-
ences between categories, a standard bar chart might be easier to read 
than a pie chart, particularly to appreciate the direction and magnitude 
of change (Fig. 1). Small differences are more readily apparent when we 
compare length of bars (Fig. 1c) than sizes of pie slices (Fig. 1a)2.

Pie charts can be useful. Although they are not intended to show 
complex relationships, pie charts do well to depict parts of a whole. 
The Wall Street Journal Guide to Information Graphics3 suggests an 
ordering of slices to aid reading: place the largest wedge to the right of 
12 o’clock, the second largest to the left of 12 o’clock and the remainder 
counter-clockwise descending in size (Fig. 1d). In this way, the largest 
(and presumably most important) wedges end up at the top. With the 
two largest slices sharing a vertical edge, we can rely on reading angles 
to estimate proportion.

When we need to show several dimensions of data at once, the 
multivariate scatter plot is one solution. With these displays of data, 
the challenge is in choosing representations that allow us to distin-
guish the qualities within and between parameters. In an example 
published figure that relies on position, color, color value and size to 
represent different aspects of the data (Fig. 1b)2, it is difficult to pick 
out the eight sizes of data points, 11 shades of yellow and 13 shades 
of blue. One way to reduce the busyness is to limit the color value 

and size scales to several ranges (for example, 0–3, 4–7 and others). 
Additionally, only plotting the parameters that matter most to con-
vey the intended message will also reduce visual complexity. In the 
graph in Figure 1c, color value actually has a very limited role; it is 
not explicitly keyed in the original figure legend. But because of the 
severe data occlusion problem, it might be most helpful to separately 
plot the former yellow and blue categories each in gray (Fig. 1e).

Color is not ideal for representing quantitative information. In the 
above example, yellow is particularly problematic. It has an extremely 
restricted value range so there is not much difference between the light-
est and deepest yellow. With color scales such as the rainbow spectrum, 
uneven transitions in color can break the correspondence between color 
and numerical value (August 2010 column)4. In Figure 2a, two color 
scales from recent journal articles are shown1,3. In each instance, I sam-
pled colors equal distance apart at two locations. The same incremental 
change in value does not equate to the qualitative difference between the 
pairs of color spots (Fig. 2a). Color can introduce considerable biases in 
data presentation. When we must represent values with color, a gradient 
of 10–90% black produces a consistent visual scale (Fig. 2b).

Next month I will cover another fundamental of design: typography.
Bang Wong
1. Wong, B. Nat. Methods 7, 665 (2010).
2. Baryshnikova, A. Nat. Methods 7, 1017–1024 (2010).
3. Wong, D. The Wall Street Journal Guide to Information Graphics (W.W. Norton 

and Company, New York, New York, USA, 2010).
4. Wong, B. Nat. Methods 7, 573 (2010).
5. Legant, W. Nat. Methods 7, 969–971 (2010).

Bang Wong is the creative director of the Broad Institute of the Massachusetts Institute 
of Technology and Harvard and an adjunct assistant professor in the Department of 
Art as Applied to Medicine at The Johns Hopkins University School of Medicine.
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Figure 1 | Certain visual  
encodings are easier to read.  
(a,b) Analysis of genetic 
interactions. Adapted and 
reprinted from Nature Methods2.  
(c) A bar chart showing data  
from the pie chart in a.  
(d) A method for ordering slices 
of a pie chart. (e) Multiple views 
to show overlapping data from b.  
Former ‘yellow’ and ‘blue’ 
categories are shown in purple  
and green, respectively.

Figure 2 | Color is not ideal 
for presenting quantitative 
data. (a) Shifts in color 
scales (circles) are not 
visually commensurate 
with change in value. 
Reprinted from Nature 
Methods2,5. (b) A gradation 
from 10–90% black 
produces even transitions.
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Typography
Typography is the art and technique of arranging type. Like a 
person’s speaking style and skill, the quality of our treatment of 
letters on a page can influence how people respond to our mes-
sage. It is an essential act of encoding and interpretation, linking 
what we say to what people see.

Typography has been known to affect perception of credibility. 
In one study, identical job resumes printed using different type-
faces were sent out for review. Resumes with typefaces deemed 
appropriate for a given industry resulted in applicants being con-
sidered more knowledgeable, mature, experienced, professional, 
believable and trustworthy than when less appropriate typefaces 
were used1. In this case, picking the right typeface can help some-
one’s chances of landing a job.

The term typeface is frequently conflated with font; Arial is a 
‘typeface’ that may include roman, bold and italic ‘fonts’. Most 
generally we categorize letterforms as serif or sans serif. Primary 
characteristics of a letterform are illustrated in Figure 1a. Serif 
typefaces tend to be thinner, more formal and easier to read in 
multiline blocks of text because the ‘feet’ help our eyes follow the 
line. Sans serif typefaces have simpler letterforms, are informal 
and, according to some, less readable in long stretches, so are 
appropriate for short bursts of text such as headings and labels. 
In general, sans serif fonts work well for slides and serif fonts for 
posters and printed documents.

Picking type is a matter of personal taste, but typography 
exists to honor content. The four most common typefaces are 
Baskerville, Helvetica, Palatino and Times New Roman (Fig. 1b),  
and a good rule is: when limited to the palette of type preinstalled 
on our computers, pick one and ignore the rest. The acclaimed 
poet and typographer Robert Bringhurst eloquently states that 
these four typefaces are “faces with nothing to offer one anoth-
er except for public disagreement”2. If nothing else, the single 
typeface approach ensures consistency. Uniformity is one form 
of beauty; contrast is another. Of course, typefaces can be com-
bined, but the operation requires care and craft.

Typography can reveal the tone of the document and clarify the 
structure and meaning of the text. Perhaps more than any other 
formatting options, our selection of fonts shows readers at a glance 
whether the document is stately or humble, formal or informal, 
creative or technical. Words, phrases, sen-
tences and blocks of text should be spaced 
according to their underlying meaning. 
The space between paragraphs should be 
greater than between lines; items of a list 
should be spaced so they appear related 
to each other but separate from adjacent 
text. As I previously described in my col-
umns on Gestalt principles3,4, objects that 
are aligned or placed near one another are 
seen as belonging together. In Figure 2, I 
show sample text with spacing established 
simply with carriage returns (Fig. 2a), in 
contrast to the spacing made by adjusting 

line and paragraph settings (Fig. 2b). The relative scale of white 
space in Figure 2b makes the hierarchy of the content apparent. 
Differentially aligning the paragraph text and bulleted list, when 
allowed,  differentiates the content.

To achieve meaningfully spaced text, use the ‘space before’ and 
‘space after’ settings instead of extra carriage returns. Find the 
settings under Font menu > Paragraphs (PowerPoint) or Format 
menu > Paragraphs (Word). The paragraph text in Figure 2b is set 
with 5 point space after it; the bulleted list has 3 point space after 
it. Furthermore, left justified text leaves a ragged right edge that 
can be made more regular by adjusting the size of the text box and 
using soft returns (shift and return) to manually break lines.

Most documents can be set perfectly well with one typeface 
using no more than two or three type sizes, with judicious use 
of bold and italics if necessary. By limiting the variation in type 
and type treatment, we can unify the tapestry of visual infor-
mation to be presented on scientific slides or posters. In these 
formats, we often need to combine a disparate array of infor-
mation taken from different sources, including text, images and 
figures. A consistent typographical program unifies the elements 
and makes documents easier to read. Typography must draw our 
attention before it is read but not interfere with reading. The 
goal is to achieve a balance between text and all other elements 
on the page.
Bang Wong

1. Shaikh, D. & Fox, D. Usability News 10 (2008).
2. Bringhurst, R. The Elements of Typographic Style (Hartley & Marks Publishers, 

Point Roberts, Washington, USA, 2005).
3. Wong, B. Nat. Methods 7, 863 (2010).
4. Wong, B. Nat. Methods 7, 941 (2010).

Bang Wong is the creative director of the Broad Institute of the Massachusetts 
Institute of Technology and Harvard and an adjunct assistant professor in the 
Department of Art as Applied to Medicine at The Johns Hopkins University 
School of Medicine.
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Figure 1 | Typefaces. (a) The anatomy of letterform for serif (Garamond)  
and sans serif (Univers) type both set at 58 point. (b) Four of the most 
readily available fonts.

Figure 2 | Spacing can reveal structure and give meaning to text. (a) Uniform carriage return (CR) 
spacing is incongruous with hierarchical content. (b) Relative spacing using paragraph formatting 
expresses relationships in the text. Numbers are ‘space after’ values given in point sizes.
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POINTS OF VIEW

The overview figure
Our goal when writing research papers is to convey information as 
clearly as possible. In past columns I have suggested several graphic 
design techniques to improve the clarity of figures. In addition to 
refining data figures, including overview figures in a research paper 
provides a framework for readers to understand the experimental 
design and reported findings.

Illustrative schematics in overview figures can make publications 
accessible to a wider audience. They give context to the data presented. 
An example of such a figure is one I illustrated (Fig. 1)1. It depicts tech-
nology called Hi-C used to determine how cells organize the billions of 
DNA base pairs. This opening figure is effective because it constructs a 
mental model for understanding the technology and primes readers to 
expect DNA sequence information as the primary data type.

Typical overview figures illustrate a procedure (Fig. 1) or compare 
conditions such as ‘control’ and ‘experimental’ (Fig. 2)2. These figures 
portray a continuous process as discrete steps. As such, it is imperative 
that we create continuity through imagery and written descriptions. 
Each step in the progression is understood by relating it to the previous 
and subsequent step. For comparisons, differences in the correspond-
ing steps between processes should also be highlighted (Fig. 2).

In the design of procedural schematics, it is useful to adopt an ‘A to 
B’ structure in which A and B are states connected by an action. The 
states are often depicted graphically, and the action is text describ-
ing the transformation from A to B (for example, cut with restric-
tion enzyme). To create good visual linkage between steps, redraw 
the elements from the previous step highlighting only the effective 
change. Because readers need to follow a series of events, it is helpful 
to account for all graphical elements introduced and removed from 
the figure. When the numbers of elements do not match from one 
step to the next, it can confuse readers and compromise the utility of 
overview figures.

With visual communications, it is essential that symbols have mini-
mal overlapping meanings. For example, arrows can be used to point 
and to indicate motion. When the same graphical representation is 
used to mean different things, it impedes efficient and accurate decod-
ing of information. In designing Figure 2, I used arrows to indicate 
progression and leaders—lines without arrowheads—for labeling. In 
Figure 1, I used arrows to represent and indicate the directionality of 
sequencing primers. Clear delineation in meaning enables readers to 

quickly learn the visual vocabulary and group information into hier-
archy. Similarly, using language consistently makes it easier for read-
ers to follow the word story. One sentence structure could be used to 
describe actions and another to label objects (that is, ‘cut with restric-
tion enzyme’ and ‘restriction fragments’).

Fundamentally, overview figures are intended to convey general 
concepts and not to present data. When selecting graphics to rep-
resent each step, consider how a reader might interpret the imag-
ery. In Figure 2, the authors initially selected a heatmap taken from 
elsewhere in the manuscript to illustrate the ‘identify hairpins’ step. 
Although the researchers did identify hairpins by analyzing heatmaps, 
a schematic representation (as shown) better demonstrates the experi-
mental strategy. Research data in the context of an overview figure are 
disconcerting. Are we supposed to read them as graphs or see them as 
stand-ins for something else?

Despite their general usefulness, overview figures are usually the 
first to be eliminated when space becomes limited. One strategy to 
have them included in the final publication is to design the illustra-
tions with an economy of marks and to make them as compact as 
possible. I designed the overview of Hi-C (Fig. 1) without intervening 
arrows and used the action labels as headers to save space. The hori-

zontal layout provides a natural left-to-right ordering. 
Space-efficient designs can be achieved by fully using 
available whitespace3 and organizing visual elements 
into groups according to the Gestalt principles 4,5.
Bang Wong

1. Lieberman-Aiden, E. et al. Science 326, 289–293 (2009).
2.  Luo, B. et al. Proc. Natl. Acad. Sci. USA 105, 20380–20385 

(2008).
3. Wong, B. Nat. Methods 8, 5 (2011).
4. Wong, B. Nat. Methods 7, 863 (2010).
5. Wong, B. Nat. Methods 7, 941 (2010).

Bang Wong is the creative director of the Broad Institute of the 
Massachusetts Institute of Technology and Harvard and an 
adjunct assistant professor in the Department of Art as Applied to 
Medicine at The Johns Hopkins University School of Medicine.
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Figure 1 | Overview figures can clarify concepts. Outline of the Hi-C technique used to decipher 
the three-dimensional structure of the human genome. Reprinted from reference 1.

Figure 2 | Well-ordered compositions and clear visual encodings make 
schematics easy to follow. Schematic comparing experimental conditions 
in a pooled RNA interference screen. Reprinted from reference 2.
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Color coding
Color can add dimensionality and richness to scientific com-
munications. In figures, color is typically used to differentiate 
information into classes. The challenge is picking colors that are 
discriminable. A systematic approach to choosing colors can help 
us find a lineup effective for color coding.

Occasionally, authors use a sequence of colors, such as the ‘rainbow’ 
color scheme, to represent a range of values. Color, however, is not 
ideal for encoding quantitative data because of the inherent ambigu-
ity in how the different colors should be ordered. For instance, does 
yellow represent a smaller value than blue? One could pattern the 
sequence after the ordering of visible light by wavelength (remem-
bered by the mnemonic ROYGBIV), but use of this color spectrum 
is inherently problematic. The transitions from red to yellow to green 
and so on are uneven, breaking the correspondence between color 
and numerical value. Visually, certain colors in the rainbow spectrum 
seem to run on, whereas others are short lived. Even when we limit the 
spectrum to just a few colors, the incremental change in mapped value 
still might not translate to the magnitude of change we see.

In contrast, color is well suited to represent categorical data when it 
is used properly for example, to distinguish between experimental 
conditions. If used improperly, such as by assigning intense or weak 
colors to specific categories, color can bias the reader. Because color is 
such a potent differentiator, the appropriate strategy is to choose colors 
that are discernible from one another but comparable in visibility.

Color is a relative medium, and neighboring colors can affect 
visual perception. For example, it is possible to make the same 
color look different or different colors appear the same (or nearly 
the same) by changing only the background color (Fig. 1a,b). The 
perception of color depends on context, and manipulating the attri-
butes of neighboring colors affects how we see the original color1. 
A heat map requires us to judge the relative brightness of colors in 
a matrix. The interaction of color can cause a profound effect that 
makes this graphical representation suffer (Fig. 1c).

Every color is described by three properties: hue, saturation and 
lightness. Hue is the attribute we use to classify a color as red or yellow. 
Saturation describes the neutrality of a color; a red object with little or 
no white is said to be very saturated. The lightness of a color tells us 
about its relative ordering on the dark-to-light scale.

On a computer, we can tune color attributes using the color picker 
(Fig. 2a). On a Mac or PC and in software such as Adobe Illustrator 
and Photoshop, the color picker is based on the traditional color 
wheel. In this system, hues are arranged around a circle with satu-
ration increasing from the center outward. The ‘true’ color (hue) is 
near the ring midway from the center. On a PC and in Adobe prod-
ucts, the color wheel is transformed into a square with hue arrayed 
across the top and saturation decreasing from top to bottom. In all 
cases, lightness is controlled by a separate slider.

To pick colors easily discernible from each other, whether in 
color or converted to grayscale, spiral through the color wheel 
while varying the lightness (Fig. 2). We can achieve wide dynamic 
range by adjusting all three attributes of color. Our perceptual 
system is highly sensitive to grayscale, and the lightness prop-
erty makes it possible to differentiate colors when photocopied 
to black and white. In this way, we can define a group of 6–8 col-
ors. Beyond this number, the task of picking distinctive colors 
becomes difficult. To show more categories, we can rely on tex-
tural differences in addition to color. For example, we can encode 
data for two categories as red crosses and red circles.

Just picking suitable colors is not always sufficient, though. The 
size of the ‘visual objects’ in the figure also matters; the smaller 
the objects (or the thinner the lines) the greater the variations in 
hue, saturation and lightness that are needed. Finally, to test for 
comparable visibility of the selected colors, squint at the graphic 
and look for general evenness.

Color is a familiar and widely used design element. Poor color 
choices can introduce bias and unwanted artifacts into our pre-
sentations. Careful consideration when choosing colors will help 
us make the most of the communication and enable readers to 
discern the encoded information. Next month, we will focus on 
the design of data graphs.
Bang Wong

1.  Albers, J. Interaction of Color (Yale University Press, New Haven, 
Connecticut, USA, 1975).

Bang Wong is the creative director of the Broad Institute of the Massachusetts Institute 
of Technology and Harvard and an adjunct assistant professor in the Department of 
Art as Applied to Medicine at The Johns Hopkins University School of Medicine.
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Figure 1 | Perception of color can vary. (a,b) The same color can look different 
(a), and different colors can appear to be nearly the same by changing the 
background color (b)1. (c) The rectangles in the heat map indicated by the 
asterisks (*) are the same color but appear to be different.

Figure 2 | Color has hue, saturation and brightness. (a,b) Colors can be 
tuned using a color picker (a). Spiraling through hue and saturation while 
varying lightness can generate a discernible color set distinguishable even 
in grayscale (points labeled 1–6).
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Design of data figures
Data figures or graphs are essential to life-science communica-
tion. Using these tools authors encode information that readers 
later decode. It is imperative that graphs are interpreted correctly. 
Despite the importance and widespread use of graphs, we pri-
marily rely on our intuition, common sense and precedent in 
published material when creating them a largely unscientific 
approach.

Because accurately interpreting visual variables is such a vital 
step in understanding graphs, a rational framework for creating 
effective graphs would accommodate the needs of the reader and 
focus on the strengths of human perception. Conversely, we want 
to avoid displays of data that are misleading or difficult to discern. 
For example, it can be tough to accurately judge the differences 
between two curves (Fig. 1a). The disparity is actually constant 
but our perceptual system is attuned to detecting minimal dis-
tances so the divergence appears to decrease. Another shortcom-
ing limits our ability to accurately judge relative area. This dimin-
ishes the usefulness of bubble charts. For example, the larger circle 
in Figure 1a is 14 times larger than the smaller circle.

In 1967, the French cartographer Jacques Bertin provided a 
wide theoretical framework for information visualization1. His 
analysis focused on the visual properties of graphical elements 
such as shape, orientation, color, texture, volume and size for dis-
playing quantitative variation. He defined several visual opera-
tions needed to extract information stored in graphs. Cleveland 
and McGill were one of the first to measure people’s ability to 
efficiently and accurately carry out these elementary perceptual 
tasks2 (Table 1).

When communicating with graphs, we want readers to perceive 
patterns and trends. This is distinct from conveying information 
through tables in which we report precise names and numbers. 
Cleveland and McGill’s study assessed people’s ability to judge the 
relative magnitude between two values encoded with a particular 
visual variable (for example, length, angle and others). In other 
words, they asked people to estimate how many times bigger A is 
when compared to B. Accuracy in their study does not imply 
reading out precise values from data points in graphs.

Different graph types depend on different visual assessments 
to uncover underlying trends. Pie charts are a common way to 
show parts of a whole. Most readers will likely judge angle when 
extracting information from pie charts, but they could also com-
pare areas and arc length of the slices (Fig. 1b). Each of these 
perceptual tasks ranks low in efficiency and accuracy (Table 1). 
Plotting the same data as a bar chart effectively shows relative 
values (Fig. 1b).

When we occasionally need to invent new ways to graph data, 
we ideally want to use perceptual tasks that rank high in effi-
ciency and accuracy (Table 1). In Figure 1c, I plotted the same 
five values using different encoding. In some cases, identifying 
magnitude and direction of change is laborious. In other cases, 
the trends are readily apparent. Encodings on the right more 
efficiently and accurately display the magnitude and direction 
of change. Though we can detect slight shifts in color hue, the 
relationship between hue and quantitative value is not obvious 
(see also ref. 3), making color hue one of the weaker methods to 
illustrate relative values.

Communicating with graphs depends on authors encoding 
information for readers to decode. Graphs’ effectiveness can 
benefit from attention to their visual design. Composing figures 
with strong visual cues and relying on accurate perceptual tasks 
supports the visual assessment critical for interpreting informa-
tion from graphs. Next month we will explore salience, the use 
of visual properties as differentiators.
Bang Wong

1.  Bertin, J. Semiology of Graphics, English translation by W.J. Berg 
(University of Wisconsin Press, Madison, Wisconsin, USA, 1983).

2. Cleveland, W.S. & McGill, R. Science 229, 828–833 (1985).
3. Wong, B. Nat. Methods 7, 573 (2010).

Bang Wong is the creative director of the Broad Institute of the Massachusetts 
Institute of Technology and Harvard and an adjunct assistant professor in the 
Department of Art as Applied to Medicine at The Johns Hopkins University 
School of Medicine.
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Figure 1 | Some visual estimations are more easily carried out than 
others. (a) Examples illustrating the difficulty in interpreting graphs and 
charts accurately. (b) Same data presented in a bar chart and in a pie 
chart. (c) Different visual variables encoding the same five values.

Table 1 | Elementary perceptual tasks
Rank Aspect to compare

1 Positions on a common scale

2 Positions on the same but nonaligned scales

3 Lengths

4 Angles, slopes

5 Area

6 Volume, color saturation

7 Color hue

Tasks are ordered from most to least accurate. Information adapted from ref. 2.
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Salience
In last month’s column we explored ways to encode data that enhance 
‘accuracy’ when readers decode information from graphs. This 
month, we will focus on salience as a way to differentiate graphical 
symbols and improve ‘speed’ when reading graphs.

Salience is a visual quality that sets an object apart from its 
 surroundings. The intent is to create contrast. Incidentally, much 
of design is about balancing contrasting elements, a topic we will 
explore in another column. Certain graphical treatments make 
objects  seemingly pop from the page, whereas others require focused 
 attention to see the object. In Figure 1a, we can spot the ‘A’s immedi-
ately, but ‘P’s are more difficult to find. There is insufficient contrast 
in shape alone for us to quickly identify the individual letters without 
additional visual cues. Similarly, the pair of lines at a right angle to 
one another is easy to see, but the single oblique line takes longer to 
locate in a field of like objects (Fig. 1a).

The Nobel Prize–winning work of the neurophysiologists David 
Hubel and Torsten Wiesel helps us understand how the brain 
 processes visual information. They discovered that individual 
 neurons in the  primary visual cortex are highly excitable by features of 
color,  orientation, size and motion, but the neurons’ response differs 
depending on the type of visual stimuli. Some neurons are rapidly 
excited when individuals are presented with lines at one angle, but 
other cells respond best to lines at another angle. Complex patterns 
are processed by later stages of the visual system.

There are several reasons why we might want to present 
 information so that it can be immediately recognized. First, by 
decreasing the amount of time it takes our audience to see relevant 
patterns and trends, we lower their cognitive load. This is especially 
useful for  slide- and poster-based presentations in which visual and 
aural  information typically compete for attention. Second, helping 
our  audience see  certain features of the data rapidly allows the visual 
 cortex to  simultaneously make sense of additional visual features1.

The design lesson is fairly straightforward. To make something 
easy to find, make it stand out by varying the object’s primary visual 
feature. For example, give the object a color, size or orientation that 
is  substantially different from that of the other objects on the page. 
Motion is a particularly potent differentiator; 
consider an animated GIF or bouncing icon’s 
ability to command our  attention. For this 
reason, we should temper our use of motion 
with the importance of the object being ani-
mated. Some basic visual features to create 
salience are shown in Figure 1b.

In reality, design problems are  complex. 
Typically we want several parameters to 
be easily searchable at the same time. The 
solution is to use  noncompeting visual fea-
tures. However, there is a limit to how many 
features we can overlay onto one another 
because visual conjunctive search (that is, 
looking for a target based on two or more 
visual features) takes concentration, and 
it can be  difficult to retain those objects in 

memory for pattern assembly. Figure 2a shows a real-world example 
that relies on many simultaneous visual features.

The amount of information presented should ideally match the 
question the researcher looking at the data is trying to answer. On 
the computer, analytical tools could allow users to customize data 
 encodings and turn off unwanted layers of information. In print, 
authors can present multiple views of the same data with only certain 
parameters plotted to best communicate the message (Fig. 2b).

Creating salience will facilitate the audience’s ability to quickly 
 process information. This is particularly useful in talks and when 
 multiple  channels of communication are used at once. Also, 
 knowing the  different ways in which contrast is created helps 
avoid its  inadvertent use.

We explored the elements of graphing data in the first three 
 columns. We looked at how color and shape confer accurate and 
 efficient  reading of individual parts of graphs. Next month, I will 
 introduce the ‘Gestalt principles’ that describe how we tend to 
 organize multiple objects into patterns to make sense of them.
Bang Wong
1. Ware, C. Visual Thinking for Design (Morgan Kaufmann Publishers, Burlington 

Massachusetts, USA, 2008).

Bang Wong is the creative director of the Broad Institute of the Massachusetts Institute 
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Figure 1 | Salience through visual features. (a) Certain elements can be 
seen in a single glance, whereas others are difficult to find. (b) Examples of 
visual features that make objects distinct.

Figure 2 | Visual conjunctions. (a) Simultaneous use of many graphical features can impede visual 
assembly of the data. (b) Multiple views of the same data with limited parameters plotted can better 
communicate specific relationships.
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Erratum: Salience
Bang Wong
Nature Methods 7, 773 (2010); published online 29 September 2010; corrected after print 15 December 2010.

In the version of this article initially published, a portion of Figure 1 was missing. The error has been corrected in the HTML and PDF 
versions of the article.

NATURE METHODS | VOL.8 NO.1 | JANUARY 2011 | 1
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Gestalt principles (Part 1)
Gestalt principles of perception are theories proposed by German 
psychologists in the 1920s to explain how people organize visual 
information1. Gestalt is a German word meaning shape or form. 
The principles describe the various ways we tend to visually 
assemble individual objects into groups or ‘unified wholes’. They 
are highly relevant to the design of charts and graphs as well as 
the reports that contain them.

Gestalt is the interplay between the parts and the whole. Kurt 
Koffka, one of the founding fathers of Gestalt psychology, made a 
statement about this. He said, “The whole is ‘other’ than the sum of 
its parts.” This phrase has been translated to the familiar saying, ‘the 
whole is greater than the sum of its parts’. A classic example of subjec-
tive contour is illustrated in Figure 1a. We clearly see edges of a white 
triangle that does not exist. Koffka insisted that the emergent entity 
is ‘other’ (not greater or lesser) than the sum of the parts. By compos-
ing elements on the page according to specific principles, we can add 
additional layers of meaning.

In the following discussion, to be continued in next month’s 
column, we will explore several Gestalt principles. Here we will 
examine the principles of similarity, proximity, connection and 
enclosure. The fundamental concept behind these principles is 
grouping; we tend to perceive objects that look alike, are placed 
close together, connected by lines or enclosed in a common space 
as belonging together. These are simple but powerful ways to 
build context for information.

The principle of similarity is likely familiar to many. We often 
use color, size and shape to organize data objects into catego-
ries. As readers, we tend to see things that are similar to be more 
related than things that are dissimilar (Fig. 1b). We can apply this 
observation to all elements on the page; by repeating graphical 
treatments including font, type size, orientation and white space, 
we can design elements so they appear more related.

Another quality that inclines us to make associations between 

objects is proximity. We tend to group objects placed close 
together. We can apply this principle when organizing figure 
panels. In a grid of evenly spaced panels, it can be unclear at first 
glance how one should dissect the information contained within 
(Fig. 1c). Are we to compare the panels or read them in succes-
sion? If the reader is to make two pairwise comparisons, then 
grouping the four panels as two pairs reinforces our natural ten-
dency to relate proximal objects (Fig. 1c). If, however, we want 
readers to review the panels one after another, then arranging the 
panels in a row provides a natural order that supports reading 
them sequentially (Fig. 1c).

Proximity could be considered a special case of grouping by similar-
ity because of the underlying spacing between objects. Relative spac-
ing between columns and rows can dramatically affect whether we 
group the components vertically or horizontally (Fig. 1d).

Whereas objects grouped by similarity and proximity are seen 
as loose confederations, grouping by connection and enclo-
sure leads us to associate them as a unified whole. The relative 
strength each principle exerts on perceptual grouping is illustrat-
ed in Figure 2a. Lines create clear connection and bring out the 
overall shape of the data (Fig. 2b). They provide a useful meth-
od for encoding information in graphs and network diagrams. 
Finally, grouping by enclosure resulting in elements bounded in 
a common region is powerful enough to overcome similarity, 
proximity and connection (Fig. 2).

The Gestaltists described phenomena about how we organize 
bits and pieces of visual information into larger units. This per-
ceptual organization is deeply ingrained in the visual experience. 
When we present visual information, including blocks of text 
projected on screen, it is helpful to arrange the elements into a 
meaningful structure. One framework is simply to group related 
information. The principles of similarity, proximity, connection 
and enclosure provide simple rules to draw correlations between 
visual elements.

Next month, we will examine the principles of visual com-
pletion and continuity, which describe our tendency to fill in 
missing information to perceive shapes as being complete to the 
greatest degree possible.
Bang Wong

1. Palmer, S.E. Vision Science: Photons to Phenomenology (Massachusetts 
Institute of Technology Press, Cambridge, Massachusetts, USA, 1999).
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Figure 1 | Gestalt principles. (a) An illustration of subjective contour. 
(b) Similar objects are visually grouped. (c) Objects placed close to one another 
are seen as going together. (d) Relative proximity elicits vertical or horizontal 
correlations between objects.

Figure 2 | Principles of grouping. (a) Relative strength of grouping 
by similarity, proximity, connection and enclosure. (b) Lines in graphs 
create clear connection. Enclosure is an effective way to draw attention 
to a group of objects.
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Gestalt principles (Part 2)
Our visual system attempts to structure what we see into patterns 
to make sense of information. The Gestalt principles describe 
different ways we organize visual data. Last month, we looked 
at four principles that incline us to group objects when they are 
made to look alike, are placed near one another, are connected 
by lines or are enclosed in a common space1. This month, we 
will examine the principles of visual completion and continuity. 
These principles are useful in page layout work and when we 
compose figures and slides.

Visual interpolation creates interesting illusions in which we 
see contours that do not actually exist. The Kanizsa triangle2 we 
looked at last month is a famous example of illusory or subjec-
tive contours (Fig. 1a). The ‘Pac-Man’ shapes align to form what 
appears to be well-defined edges of a triangle.

Another example of visual completion is shown in Figure 1b. We 
automatically and spontaneously perceive a full circle behind the 
square. In reality, several shapes are possible in the occluded area. 
This disparity between the actual visual stimulus and what we think 
(or know) we should be seeing points to the psychology involved in 
seeing. It is likely that we complete the object behind the square as a 
circle because it produces a simple and familiar shape.

Because we have a strong tendency to see shapes as continuous 
to the greatest degree possible, we fill in voids with visual cues 
found elsewhere on the page. This means every element on a page 
affects how we perceive every other element. Visual completion 
enables us to forgo the extraneous lines, boxes, bullets and other 
graphical elements that tend to clutter our presentations.

Graphics and text can be considered shapes with vertices and edges. 
To construct unified compositions, align these constituent parts to 

form meaningful blocks of information (Fig. 2a). Simple geometric 
shapes provide a base structure on which to organize and build content 
(Fig. 2b). It is helpful to actually draw these background shapes and use 
them as alignment guides. I have shown examples of guides as dotted 
lines in Figure 2, which would not exist in the final figure. Placing 
components on the guide’s path anchors the information and helps the 
audience identify patterns. Curvilinear guides are useful in sequencing 
information because they create a clear path through the material. Such 
alignment produces invisible lines that connect content.

Our eyes are acutely aware of small misalignments; composi-
tions that use guides tend to look clean and professional. We can 
create different alignment guides for different information. For 
example, labels that describe an action can be distinguished from 
those for names. Moreover, we can combine alignment with the 
Gestalt principles of similarity, proximity, connection and enclo-
sure to group information and structure the content. The action 
labels can be distinguished from the name labels with color or 
typographical treatment.

Our goal is to lay out information in a way that enhances its 
message. In structuring the components of a slide or figure, we 
inevitably affect the surrounding white space. White space is a 
vital part of design; it frames the content and gives our eyes a 
place to rest. Next month, we will look at ‘negative space’ to com-
plete our exploration of composition.
Bang Wong

1. Wong, B. Nat. Methods 7, 863 (2010).
2. Kanizsa, G. Organization in Vision: Essays on Gestalt Perception (Praeger 

Publishers, New York, 1979).
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Figure 1 | Visual completion. (a) The Kanizsa triangle and illusory contour. 
(b) Spontaneous and automatic completion of occluded surfaces as a simple 
and familiar circle.

Figure 2 | Alignment. (a) Graphics and text used as vertices and edges of 
geometric shapes. (b) Geometric and curvilinear shapes used as flexible 
guides to align content.
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